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ABSTRACT

Enabling Autonomous Operation of Micro Aerial Vehicles
Through GPS to GPS-Denied Transitions

James Scott Jackson
Department of Mechanical Engineering, BYU

Doctor of Philosophy

Micro aerial vehicles and other autonomous systems have the potential to truly transform life
as we know it, however much of the potential of autonomous systems remains unrealized because
reliable navigation is still an unsolved problem with significant challenges.

This dissertation presents solutions to many aspects of autonomous navigation. First, it presents
ROSflight, a software and hardware architecture that allows for rapid prototyping and experimen-
tation of autonomy algorithms on MAVs with lightweight, efficient flight control. Next, this
dissertation presents improvements to the state-of-the-art in optimal control of quadrotors by uti-
lizing the error-state formulation frequently utilized in state estimation. It is shown that performing
optimal control directly over the error-state results in a vastly more computationally efficient system
than competing methods while also dealing with the non-vector rotation components of the state
in a principled way. In addition, real-time robust flight planning is considered with a method to
navigate cluttered, potentially unknown scenarios with real-time obstacle avoidance.

Robust state estimation is a critical component to reliable operation, and this dissertation
focuses on improving the robustness of visual-inertial state estimation in a filtering framework by
extending the state-of-the-art to include better modeling and sensor fusion. Further, this dissertation
takes concepts from the visual-inertial estimation community and applies it to tightly-coupled
GNSS, visual-inertial state estimation. This method is shown to demonstrate significantly more
reliable state estimation than visual-inertial or GNSS-inertial state estimation alone in a hardware
experiment through a GNSS-GNSS denied transition flying under a building and back out into open
sky.

Finally, this dissertation explores a novel method to combine measurements from multiple
agents into a coherent map. Traditional approaches to this problem attempt to solve for the position
of multiple agents at specific times in their trajectories. This dissertation instead attempts to solve
this problem in a relative context, resulting in a much more robust approach that is able to handle
much greater initial error than traditional approaches.

Keywords: GPS degradation, GPS denied, navigation, state estimation, observability, error state,
sensor fusion, vision-aided INS, consistency, multirotor, micro air vehicle, indoor flight, outdoor
flight, simultaneous localization and mapping (SLAM), pose graph optimization, obstacle avoid-
ance, visual odometry, Moving Horizon Estimation, Pseudorange, Linear Quadratic Regulator,
LQR, Moving Horizon Estimation, MHE, Sliding Window, Optimization
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CHAPTER 1: INTRODUCTION

The world is quickly approaching a revolution that could potentially change the way we live our

lives at a fundamental level. This revolution will likely create new jobs and opportunities that we

can only dream of today, much like someone living in the 1960s could never have predicted our

daily activities in the 2000s after the advent of personal computing.

The first computers were the experiments of university and government researchers. They

originally cost millions of dollars and were used for military applications. Today, however, they

are ubiquitous, with 77 percent of the United States population carrying a smartphone daily [1].

Recent advancements in autonomous micro aerial vehicles (MAVs) and other autonomous sys-

tems are driving a potentially similar revolution as autonomous systems enter the workplace, our

transportation systems and our daily lives.

1.1 Micro Aerial Vehicles

MAVs are already being used in aerial photography, photogrammetry, surveillance, inspection

and reconnaissance, however, they are still limited by the environments they can operate in reliably.

The vast majority of MAV operations require clear GNSS reception, a controlled environment,

and narrowly defined objectives. However, some studies speculate that autonomous MAVs could

give rise to several billion-dollar markets in delivery, infrastructure monitoring, security, precision

agriculture, and transportation [2]. Some of these potential markets, such as using MAVs to inspect

bridges, dams, chemical plants, and refineries are particularly motivating as they would take the

place of dangerous human inspections. Unfortunately, these markets are still unrealized because

reliable autonomous MAV navigation is still an unsolved problem with significant challenges.
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Before we can achieve the full potential of autonomous MAVs, they must not only be able

to operate reliably and accurately in all kinds of environments, but they must also respond to

unexpected scenarios and work together to accomplish larger missions than a single agent can

alone. Specifically, we must improve our understanding of control, obstacle avoidance, state

estimation, and mapping to the point that it is fast, reliable and robust.

This dissertation presents solutions to some aspect of all of these problems. In chapter 3, several

shortcomings in the current methods for performing hardware experimentation that have prevented

higher-level research objectives are addressed. The next two chapters present improvements on the

real-time planning and control of quadrotors to enable more robust autonomy in unknown areas.

The next two chapters focus on the problem of GPS-denied and GPS-degraded operations and

finally, chapter 8 deals with improving the robustness of multi-agent map fusion and mapping with

degraded GPS.

1.2 Real-Time Control of Micro Aerial Vehicles

Unlike ground-based autonomous systems, control of a MAV presents several unique challenges.

The first is that MAVs are constrained by the size, weight and power available for processing of

sensor information and planning. In some cases, heavy processing can be offloaded to a nearby

ground station with wireless communication, but this introduces a point of failure in the system

and jeopardizes reliability. Therefore, in designing algorithms for use on MAVs, computational

efficiency becomes paramount. The second unique challenge posed by MAVs is their fast, unstable

dynamics. A ground vehicle has the advantage that system dynamics are not only well constrained,

but also typically much slower than a MAV. Furthermore, a ground vehicle can often remain at rest

while waiting for heavy computation to complete, while this is impossible for a MAV.

A robust design for an autonomous MAV must take this into account, and real-time guarantees

must be placed around the critical control and estimation loops. This becomes complicated when

vision processing is involved, as the processors typically capable of performing these computations
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Figure 1.1: Three-tier architecture of MAV autonomy software and hardware

are not easily configured for running real-time software. One solution to this problem is to

divide processes between real-time critical processes, near real-time processes, and non real-

time processes while guaranteeing high-bandwidth, low-latency communication between the three

groups. A potential configuration of this design is given in Figure 1.1

1.3 State Estimation of Micro Aerial Vehicles

Robust autonomy is only possible when built on a foundation of robust state estimation. Modern

state estimation typically takes the form of a Bayesian inference problem. The objective is to find

the most likely value of some state x, which in the case of a multirotor, typically includes the

position p, attitude q, and velocity v, as well as the accelerometer and rate gyroscope biases, βa

and βω respectively. We do this given sensor measurements, which we assume are related to

our state through some measurement model z = h (x), and a state transition function x [t + δt] =

f (x [t] , u [t]), where u are measured inputs.

There are several methods to accomplish this goal, the most common of which assume that both

the state and the measurement are normally distributed random variables. Even if this assumption is

not always exactly true, it makes real-time performance possible because we can leverage powerful

linear algebra techniques to manipulate the covariance matrix associated with the normal PDF.

This maximum-likelihood estimation (MLE) can take place in several forms. The first attempts

to solve for the most likely configuration of every state in the known history using all available
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information. This is the most powerful form of MLE, but it can also become computationally

intractable as the number of measurements and states grow. The second method addresses this

unbounded growth in complexity by limiting inference to some recent window of previous states

which are simultaneously estimated from a group of measurements. This is known as sliding

window, or moving horizon estimation (MHE). Finally, the most common probabilistic framework

for state estimation is commonly known as the Extended Kalman Filter (EKF). The EKF can actually

be viewed as a special case of MHE, with a sliding window of size one, and given the assumption

that all involved random variables are distributed normally, inference can be performed using linear

least-squares instead of the nonlinear least-squares techniques required when performing MLE

more generally.

1.4 GNSS and GNSS Degradation

The earliest demonstrations of autonomous MAV operations relied on global satellite positioning

and inertial sensor fusion (G-INS). GPS, Galileo, GLONASS and Beidou, (collectively known as

global navigation satellite systems, or GNSS) are systems of satellites orbiting the earth between 20-

30 km above the surface. These satellites are constantly reporting both a pseudo-random sequence

with a known seed and their trajectory to the earth. A GNSS receiver is able to lock onto these

signals and determine where in the pseudo-random sequence the satellite was when the signal

was sent, and uses this information to determine precisely when the signal was transmitted. This

measurement is known as the pseudorange, and with a pseudorange measurement to four or more

satellites, an accurate measurement of time and position are possible with least-squares methods.

Most modern commercial, industrial and military use of MAVs is built on this technology,

and therefore depends strongly on good GNSS signal reception. Unfortunately, many of the

most useful potential applications of MAVs require operations in areas where GNSS cannot be

guaranteed. GNSS-denied and GNSS-degraded state estimation is an active area of research, and
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this dissertation improves upon the state-of-the art methods in both GNSS-denied and GNSS-

degraded applications.

As noted earlier, most of the autonomous operation of drones in commercial, industrial and

military applications today rely heavily on a good GNSS signal. While this tremendous capability

has been a boon for MAVs, relying too much on GPS has its disadvantages. GNSS-reliant systems

are especially vulnerable to jamming, spoofing and multipath. In 2010 the United States Joint Chief

of Staff, Norton Schwartz, stated,

“It seems critical to me that the Joint Force should reduce its dependence on GPS-aided

precision navigation and timing, allowing it to ultimately become less vulnerable, yet

equally precise, and more resilient.” [3]

While jamming and spoofing are typically due to adversarial conditions, multipath is a common

phenomenon in normal operations. Multipath is when a signal from a GNSS satellite is reflected

off a building, effectively extending the time offset the receiver observes from the satellite. If

this erroneous measurement is fused naively then it can cause large jumps in position estimates as

shown in Figure 1.2.

1.5 Vision-Aided Navigation of MAVs

In many cases, where GNSS is either unavailable or degraded, state estimation can be performed

with a monocular camera and IMU. This sensor suite is also inexpensive and lightweight, but more

importantly, it functions well indoors and near buildings where traditional GNSS estimation does

not.

Visual-inertial navigation (V-INS) typically operates on the premise that stationary landmarks

can be tracked over subsequent camera frames. The rotation and translation direction between

frames up to a scale factor can be resolved from the imagery alone, and the scale factor can be
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Start

N

Figure 1.2: Comparison of true MAV trajectory (orange) with reported GPS measurements (yellow). At
the start, the view of east-west GPS satellites are occluded by the building, leading to a significant multipath
bias. Image first published in [4].

resolved by integrating inertial measurements. Unfortunately, because the accelerometer and gyro

have an unknown, wandering bias, the monocular V-INS problem is stable only given sufficient

excitation in all axes. Even with sufficient excitation, however, the global position and heading

are still unobservable [5–7]. This leads to an unbounded error in global position and heading

over time which also must be handled appropriately. Global position and heading unobservability

can be mitigated to some extent with localization techniques such as loop closure. However this

information is not always straight-forward to incorporate as will be discussed later.

Like G-INS, there are environments where V-INS does not perform well. The first, and most

obvious, is when there is insufficient texture in the images to track features. This is often the case at

high altitudes, over water, in the dark, or other feature-scarce environments. The other condition in

which V-INS struggles is during significant lighting changes. This is because most cameras have

some non-negligible delay in adjusting exposure levels to match lighting conditions. As a result,

transitions from indoor to outdoor and vice versa can introduce a loss of all features being tracked

in the image.
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1.6 Pose Graph Optimization

Given the complementary strengths and weaknesses of V-INS and G-INS, it seems appropriate

to leverage them together. However, they supply different kinds of information, which makes fusing

them in a unified way difficult. GNSS measurements and localization events are inherently global,

while visual and inertial information is relative. The EKF and MHE approaches are not well-suited

to fusing both modalities of information. In contrast, however, a form of batch MLE, operating on

a reduced set of information is well-posed to incorporate both global and relative information in a

unified way [8, 9]. This is known as pose graph optimization.

As mentioned earlier, state estimation over our entire history can become computationally

intractable if we try to perform inference over too much information. Therefore, we can marginalize

out most of the information, reducing the pose graph problem to a set of keyframes. If we apply

global information to these keyframes, and consider only the relative transforms between each one,

then the problem becomes much more tractable.

Splitting the pose graph optimization from the real-time state estimation problem also allows us

to leverage our three-tier architecture shown in Figure 1.1. Even with the reduced form of the pose

graph problem, we have no guarantee that it can operate within real-time constraints. However,

this does not pose a safety risk because the near-real time parts of the stack are able to operate

indefinitely without feedback from the global map and planner.

1.7 Putting it all Together

The unrealized potential of MAVs hinges on each of the key ingredients just described. Working

backwards through the architecture in Figure 1.1, we see that the low-level control of the MAV must

be robust, and able to operate at real time. Next, we see that from a state-estimation perspective,

the MAV must be able to perform both vision-aided and GNSS-aided navigation in near real-

time, and from a control perspective, we must be able to not only execute control commands, but
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avoid unforeseen obstacles that may arise during operation. Finally, we must be able to robustly

incorporate global information such as loop closures and GNSS measurements that can be used by

our near real-time processes.

This dissertation seeks to solve these problems starting at the lowest levels and working up to

the mapping problem, all with a focus on improving the robustness of MAVs in the GNSS-degraded

and GNSS-denied zones. Increasing robustness in these areas will hopefully speed the realization

of many of the exciting applications of MAVs in commercial, industrial and military applications.

Nobody knows what the future holds, but history has shown us what potential a revolution like this

could mean for human life. Fielding autonomous systems at scale could potentially free people

from dangerous and menial tasks and enable them to work on more important issues, in fields that

may have yet to be discovered, as we embark on a new chapter of human history.
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CHAPTER 2: CONTRIBUTIONS

This dissertation describes three types of contributions. The first type are hardware and

software architectural improvements to state-of-the-art. These contributions address several issues

common to performing research on MAVs at the lowest levels of flight control by presenting a new

hardware and software architecture used for rapid prototyping of autonomy algorithms. This work

is an important contribution, as it lays the bedrock for experimental validation of the rest of the

dissertation.

The second, and most significant kind of contribution focus on theoretial and algorithmic

methods for improving robustness in autonomous operations in both control and estimation. Finally,

all the work in this dissertation was ultimately demonstrated in hardware experimentation to validate

the proposed theoretical contributions.

Much of the research has been published or is currently being prepared for publication and

Chapters 3, 5, 6, 7 and 8 are presented in that form.

2.1 Real-Time Flight Control for Experimentation

Chapter 3

ROSflight: a Lightweight, Inexpensive MAV Research and Development Tool. Jackson, Koch

and McLain. Currently being prepared for publication.

The development required to improve robustness of autonomous MAV operations in GNSS-

degraded areas required a flexible platform for prototyping autonomy software. Originally, efforts

relied on a number of autopilot options available, some of them supported by commercial entities and
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others supported by open-source organizations. However, integration efforts into these autopilots

were frustrating. As many of these options had become more of push-button operations in open-

air situations, they have become difficult to integrate with at the low levels required for high-

performance autonomy research.

Therefore, to ease the research and development efforts required to perform the research pre-

sented in this dissertation, ROSflight was developed as an open-source flight controller with

fundamental research needs at its core. This focus led to a design that includes:

1. Small, easy to understand code base.

2. High-bandwidth, low-latency communication with the flight controller.

3. Familiar, easy-to-use interface.

4. Robust software-in-the-loop (SIL) simulation capability.

5. Robust safety pilot integration.

The end result is a platform that enables the rapid development and testing of high-performance

autonomy software at all levels of the autonomy stack. ROSflight was used in all hardware

experimentations in this dissertation, and also as the base of most of the simulation experiments in

a software-in-the-loop fashion.

Furthermore, ROSflight has now become an integral part of many projects currently going on

at Brigham Young University, was used to perform novel research on the model-predictive control

of multirotors at Luleå University of Technology [10], undergraduate engineering projects at the

University of California, Berkley, and graduate research pending publication at the Massachusetts

Institute of Technology and Texas A&M University. Several simulation environments are currently

leveraging the powerful SIL capability of ROSflight in Gazebo [11] and the Unreal 4 [12] and Unity

video game engines.

10
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ROSflight is a small but growing open-source community. The website www.rosflight.org

currently sees approximately 240 unique users per month, with users from all over the world.

Chapter 4

Optimal Control of a Multirotor Using An Error-State Formulation.

Optimal control of multirotors has been the focus of a lot of research effort because it has the

potential of maximizing performance from the multirotor platform. Most optimal control strategies

that have been presented rely on Euler decomposition of the attitude state of the quadrotor, which

leads to linearization errors and inefficiencies in computing control outputs. Chapter 4 explores the

use of the Lie group theory to perform optimization on the rotation manifold directly. This method

avoids Euler decompositions and therefore results in both smaller linearization errors and much

more efficient computation. Chapter 4 presents both on-manifold LQR and MPC of a quadrotor,

and presents simulation results of both methods. The work presented in this section was further

explored by Farrell et. al [13] where it was demonstrated in hardware experimentation and shown

to be much more efficient than other state-of-the-art methods.

Chapter 5

Cushioned Extended-Periphery Avoidance: a Reactive Obstacle Avoidance Plugin. Jackson,

Wheeler, and McLain. Published at the International Conference on Unmanned Aircraft Systems

(ICUAS) in 2016.

As noted in Figure 1.1, obstacle avoidance and flight stability must be performed in a near

real-time fashion. Many existing planners focus on planning optimal paths through a static, known

environment, and can often take significant time to replan paths if changes in the environment are

discovered. However, before we can fully realize the usefulness of MAVs, they must be able to

quickly react to unforeseen disturbances and unknown changes to the environment. Chapter 5 first

introduces the reactive obstacle avoidance plugin (ROAP) framework as a method for leveraging

11
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map-based algorithms while providing low-latency, high-bandwidth response to obstacles. Further,

we propose and demonstrate the effectiveness of the cushioned extended-periphery avoidance

(CEPA) algorithm.

CEPA uses a scanning laser to provide a fast, effective method for reactive obstacle avoidance,

and makes use of two main ideas. First, to improve efficiency, planning and mapping are performed

directly in a polar coordinate frame to avoid transforming the laser scan returns into a Cartesian

coordinate system. Second, CEPA builds a 360 degree map of the local environment by combining

recent laser scans. This extends the field-of-view of the avoidance algorithm, which improves

robustness. In Chapter 5, CEPA is demonstrated in simulation, and on hardware in a GPS-denied

environment using stricly onboard computation and sensing.

2.2 State Estimation in GNSS-Degraded/GNSS-Denied Environments

Chapter 6

Improving the Robustness of Visual-Inertial Extended Kalman filtering. Jackson, Nielsen,

McLain, and Beard. Published at the International Conference of Robotics and Automation

(ICRA) in 2019.

Before MAVs can be deployed in autonomous missions in areas where GNSS measurements may

not be reliable, we must develop robust methods of navigating with lightweight, low-cost sensors.

Visual-inertial (VI) navigation methods have shown promise in this area, however, even state-of-

the-art VI approaches suffer from observability and consistency issues. Filtering approaches have

the advantage of being computationally efficient, however, if a Kalman filter becomes inconsistent,

then it can no longer fuse information optimally and accuracy degrades.

Monocular visual-inertial filtering approaches also must maintin a sensitive balance between

accelerometer bias estimation, velocity estimation, and the estimation of depth to features. In many

cases, both the accelerometer biases and depth to features are only partially observable, which
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leads to error in the velocity estimates that are commonly used for feedback control. Avoiding or

reducing sensitivity to these issues are key to robust operation of autonomous MAVs.

Chapter 6 modifies a state-of-the art VI Kalman Filtering approach to improve robustness when

used on multirotor agents. First, a linear drag term is added to the velocity dynamics. This is

shown to improve estimation accuracy, but comes at the cost of estimator consistency. Second, a

partial-update formulation is used to limit the effect of linearization errors in partially-observable

states, such as the aforementioned drag term, depth to features and accelerometer biases. The partial

update is shown to restore consistency to the filter and limits the effect of linearization errors in the

partially observable states. Finally, a keyframe reset step is added, which enforces consistency and

observability of the normally unobservable position states. This further improves consistency and

accuracy, especially in the position and heading states.

These modifications are first derived, then implemented and Monte Carlo simulation experi-

ments are performed to demonstrate the effectiveness of the additions. The combination of all three

modifications is shown to significantly improve both accuracy and consistency.

Chapter 7

GV-INS: Fusing GNSS, Visual, and Inertial Sensors in a Moving-Horizon Estimation Frame-

work. Jackson, McLain, and Nielsen. To be submitted to The International Journal of Robotics

Research.

While VI methods have shown a lot of promise in indoor environments, they are not robust to

significant lighting changes or texture-less scenes and they cannot reliably resolve global position

and heading without additional information. GNSS-based state estimation, on the other hand, easily

resolves global information so long as reliable measurements are used. Both methods struggle in

the GNSS-degraded zone, where visual information may not be available, and GNSS suffers from

multipath measurements.
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Furthermore, work in visual-inertial (VI) state estimation in particular has driven significant

advancements in the tools and understanding of state estimation in general, however, many of these

advancements have been focused solely on visual applications and not applied to other sensing

modalities. GNSS-inertial (GI) fusion has been largely left alone by some of these advancements,

but could significantly benefit from many of the ideas developed by the VI community.

Chapter 7, takes the ideas of moving-horizon estimation (MHE), IMU preintegration and robust

optimization with switching parameters from the VI community and applies it to fusing raw GNSS

signals, inertial measurements, and visual information simultaneously in real-time onboard a MAV.

The resulting GV-INS system demonstrates that by using all three modalities, GNSS multipath

can be reliably detected and rejected, which allows for reliable operations in and around buildings.

Chapter 7 also shows how to fuse both global and relative information in a unified way in an

MHE framework. GV-INS is demonstrated both in simulation and in hardware and is shown to be

superior to VI and GI alone.

Chapter 7 also provides a clear derivation of factor graphs, the IMU preintegration factor, and

moving horizon estimation in terms of the notion of error states. The error state is a concept

commonly utilized by more established Kalman filter literature, but it is typically not referenced by

more generalized Bayesian inference such as MHE and batch MLE. The derivation in Chapter 7

provides a bridge between these modern state estimation methods and more established error-state

Kalman filter literature.

2.3 Robust Pose Graph Optimization

Chapter 8

Direct Relative Edge Optimization, a Robust Alternative for Pose Graph Optimization. Jackson,

Brink, Forsgren, Wheeler, and McLain. published in Robotics and Automation Letters in Jan,

2019 and was presented at at the International Conference of Robotics and Automation in May

2019.
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As MAVs operate in larger environments, over larger timescales and potentially in collaborative

groups, fusing information at scale becomes a difficult problem. Pose graph optimization is an

effective method for fusing large-scale information, however it suffers from a lack of robustness to

large initialization errors. Because pose graph optimization methods typically linearize about the

current pose estimate for the entire map, if the map is incorrectly initialized, this linearization can

be performed arbitrarily far from the truth and result in divergent behavior. Furthermore, there is

no obvious method of recovery, which makes autonomous operations difficult in this situation.

Chapter 8 re-parameterizes the classic pose-graph problem into a relative context and shows

how the pose graph problem is better conditioned in the relative parameterization, and therefore

more robust to initialization errors. This work is distinct from other work that also identified the

relative parameterization by showing how to perform optimization over the relative constraints

in an entire pose graph, instead of some subset of simply-connected edges, which was all that

was possible in previous work. The relative parameterization is shown to be significantly more

robust to initialization errors in both simulation and hardware experiments, and therefore a strong

candidate for real-life situations where initialization errors may cause unacceptable performance in

the traditional solution.

2.4 Summary

In summary, this dissertation describes the following contributions:

• Develops a method to use relative parameterization of non-trivial pose graph optimization

to perform robust optimization. This was previously impossible on graphs with cycles,

and significantly improves robustness of pose graph optimization to real-world initialization

errors.

• Describes the first-ever tightly-coupled GV-INS where GNSS, visual, and inertial information

are fused in a unified moving-horizon estimation framework. This framework is shown to
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be able to operate reliably in GNSS-degraded environments, which is a significant problem

area for current methods.

• Derives optimal control of multirotor agents in an error-state formulation, and describes

a principled way to perform on-manifold control. Because of the numerical efficiencies of

optimizing directly on-manifold, the resulting LQR controller was subsequently demonstrated

in [13] to require about 1/50th the computation of the current state-of-the art LQR [14].

Further, as the described MPC controller is shown to require only twice as much computation

time as the LQR formulation, it is likely that hardware demonstrations of the MPC formulation

could resulted in a computational cost of only 1/25th the aforementioned state-of-the-art LQR.

• Details the hardware and software architecture that has been used for rapid prototyping and

experimentation of advanced autonomy applications on MAVs not only in this dissertation,

but in organizations across the globe.

2.5 Additional Publications

Besides the work included in this dissertation, I was also involved in several other publications

and am listed as a contributing author. These are listed here for reference:

• Jackson, James and Ellingson, Gary and McLain, Tim "ROSflight: A lightweight, inexpensive

MAV research and development tool", ICAUS 2016 [15]

• Wheeler, David O. and Koch, Daniel P. and Jackson, James S. and McLain, Timothy W.

and Beard, Randal W. "Relative Navigation: A keyframe-based approach for GPS-degraded

navigation," IEEE Control Systems Magazine, Aug 2018 [16]

• Wheeler, David and Koch, Daniel and Jackson, James and Ellingson, Gary and Nyholm, Paul

and Mclain, Tim and Beard, Randal, "Relative Navigation of Autonomous GPS-Degraded

Micro Air Vehicles", Currently being prepared for publication [17]
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• Farrell, Michael and Jackson, James and Nielsen, Jerel and Bidstrup, Craig and McLain,

Timothy, "Error-State LQR Control of a Multirotor UAV", ICUAS 2019 [13]

• Nielsen, Jerel, and Jackson, James, and Beard, Randal, and McLain, Timothy, "A Visual-

Inertial Extended Kalman Filter Using Image Coordinates," Currently being prepared for

publication.
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CHAPTER 3: ROSFLIGHT: A LIGHTWEIGHT, INEXPENSIVE MAV RESEARCH AND

DEVELOPMENT TOOL1

Figure 3.1: Quadcopter and Fixedwing MAVs using the ROSflight flight controller

3.1 Introduction

In recent years, we have seen a tremendous amount of research in the autonomous operation

of micro aerial vehicles (MAVs). MAVs have been demonstrated in disaster response, inspection,

monitoring, mapping and in other support capacities. Many of these recent advancements have

relied on original research performed by academic institutions, government organizations and

other research organizations inside of commercial entities. To aid these organizations in rapidly

developing basic MAV technology, we present ROSflight as a basic, lean, open-source autopilot

that has been developed specifically with the needs of researchers in mind.

Along with the advancement in MAV technology, there have been several autopilot technologies

made available to researchers. Some of these have been developed and maintained by commercial

entities [18–23] while others have been developed by communities of volunteers [24–27]. Most of

1This paper was was written by James Jackson and Dan Koch and Tim McLain and is being prepared for publication.
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these autopilots are designed to enable push-button operation of MAVs in open-air situations with

GPS, or under tight control from a human pilot. As a result of both the intense competition and the

incredible energy in the autopilot space, many of these autopilots have become quite feature-rich

and demonstrate state-of-the-art capabilities in terms of autonomy or real-time performance.

Unfortunately, many of these autopilots have feature-creeped their way out of being useful

to researchers. Many researchers of MAV technology are working on improving low-level state

estimation or control algorithms [10,13]. Others require a powerful processor for vision processing

for GPS-denied autonomy [5, 17, 28] Open-source autopilots such as [25, 27] have become so

feature rich that it takes an unreasonable amount of time for a researcher to fully understand the

implications of changing aspects of the way the code works, and how to properly integrate their

research code into the autopilot, from both the physical systems integration and the control systems

perspective.

Researchers often require specific interfaces to the MAV. For example, a researcher in model

predictive control (MPC) of a quadrotor might wish to supply angular rate commands at high rate

while compensating for throttle response, while another researcher might wish to supply attitude

commands in roll in pitch and an angular rate command in heading. In general, most researchers

want to maximize control and estimation bandwidth with the MAV, which means prioritizing

offboard control and sensor streaming at the lowest levels. Exposing these interfaces in a push-

button autopilot can not only be difficult, but even dangerous, so they are generally not made

available in more fully-featured autopilots.

To ease autopilot research and development efforts, we propose ROSflight. ROSflight is a flight

controller designed with researcher needs as the primary focus. This has led the the following

aspects of the autopilot design:

1. Small, easy-to-understand code base.
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2. High-bandwidth, low-latency communication with the flight controller.

3. Familiar, easy-to-use interface.

4. Robust Software-In-The-Loop (SIL) simulation capability.

5. Robust safety pilot integration

We believe that these features are critical to a flexible and powerful autopilot platform to be used in

a variety of research projects and have found ROSflight to be useful in our work, and in the work

of others.

The rest of the paper is organized as follows: First, we will describe the overall vision, intended

use case and organization of the ROSflight project. Next, we will describe in detail the design of the

autopilot, including each of the parts and their communication. Third, we will discuss integration

of the autopilot for both hardware experimentation and simulation and finally, we will discuss a few

research projects that have used ROSflight to successfully complete and publish novel research.

3.2 Overview

In this section we describe the vision and long-term goals for the ROSflight project, then provide

an overview of how we envision the system typically being used. We also provide a brief overview

of the organization of the ROSflight project.

One of the primary goals of the project is that the code base will remain lean and easy to

understand. In our experience, complex black-box systems have not been conducive to research

activities because they make it difficult to debug the full-system behavior when the details of the

inner-loop operation are not well-understood. In addition, highly complex systems can be difficult

to configure for the unique requirements of research applications, and can be difficult to modify

when required.
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To avoid these pitfalls, we have chosen to adopt the philosophy that the embedded ROSflight

firmware will implement only the minimum functionality required to achieve safe and stable flight.

This functionality includes sensor and actuator input/output, high-bandwidth communication with

a companion computer, attitude or attitude-rate control when operating a multirotor aircraft, and

supporting functionality such as configuration management and safety features. All higher-level

functionality is left for the user to implement, typically on a companion Linux computer. While

this requires effort from the user, we believe that it makes ROSflight a much more flexible and

easy-to-use tool for researchers who often write highly-customized application code. We have also

chosen to adopt a hard stance against feature creep; we welcome users who wish to incorporate

additional functionality into the embedded flight controller to fork our project and to share their

successes, but in general we will not merge these extensions into the core code base.

Another key goal of the project is to enable useful simulation capabilities, including true

software-in-the-loop (SIL) simulation. Some autopilot systems use flags in the firmware to change

the behavior of the code when running in SIL mode. The ROSflight firmware instead uses a

hardware abstraction layer to implement SIL, so that the core flight-stack code that runs in SIL is

identical to the code that runs in hardware, and has no knowledge of which mode it is running in.

This approach also allows ROSflight be be incorporated into a variety of simulation environments.

Additionally, the interface with application code is identical between simulation and hardware,

which allows many integration issues to be debugged in simulation before moving to hardware.

These features are discussed in more depth in Section 3.4.

3.2.1 Typical Use Case

The intended use case for ROSflight is illustrated by the diagram in Figure 3.2. There are three

main components to the system: the embedded flight controller, the companion computer, and the

safety pilot.

21



www.manaraa.com

Companion Computer

Flight Controller

USB / UART

Application Code

ROS interface
(rosflight_io)

ROSflight firmware

Sensors Control

Safety Pilot

Figure 3.2: Intended use case. The embedded flight controller provides sensor and actuator input/output.
The application code runs on a companion computer, and communicates with the flight controller through a
provided ROS interface. A safety pilot is able to override computer control if needed.

22



www.manaraa.com

The flight controller runs the ROSflight firmware,2 and provides low-level input/output for

sensors and actuators (servos and electronic speed controllers (ESCs)). For multirotor vehicles,

the flight controller also performs attitude or attitude-rate control. For most research applications,

the embedded firmware should not need to be modified, unless new low-level multirotor attitude or

attitude-rate controllers are being developed.

The companion computer is a Linux computer—such as an Intel NUC, NVIDIA Jetson, Odroid,

or other small-form-factor computer—that is mounted on the vehicle and is connected to the flight

controller via USB. Connections over UART serial are also supported if required. For researchers

using the Robot Operating System (ROS)3, the rosflight_io node in the rosflight package4

provides a ROS interface to communicate with the flight controller. All configuration of the flight

controller is also performed via service calls provided by rosflight_io.

It is intended that most research code will run on the companion computer, as indicated by

the application code block in Figure 3.2. The application code can use the high-rate sensor

data streams exposed by rosflight_io, and sends control setpoints to the flight controller. These

control setpoints can consist of attitude and throttle commands, attitude rate and throttle commands,

or direct throttle and servo commands. We refer to these setpoints as offboard control setpoints,

because they are “offboard” from the perspective of the flight controller (even though the companion

computer is also mounted on the vehicle).

The safety pilot is an integral part of the system, and interacts with the flight controller using

a standard radio control (RC) transmitter. Due to the nature of research code, it is important that

the safety pilot have the ability to quickly override the offboard control setpoints at any time. The

flight-controller firmware makes three mechanisms available to accomplish this:

2https://github.com/rosflight/firmware

3http://www.ros.org/

4http://wiki.ros.org/rosflight, https://github.com/rosflight/rosflight
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1. The safety pilot may lock out the offboard setpoints completely by flipping a switch on the

transmitter,

2. The flight controller will follow the minimum of the throttle setpoints coming from the safety

pilot and offboard setpoints, allowing the safety pilot to quickly kill the throttle if necessary,

3. The safety pilot may temporarily and independently override the roll, pitch, or yaw-rate

channels by deviating the corresponding transmitter stick from center.

These override mechanisms have proven to be valuable in our experience, although they may be

independently disabled if desired. For safety reasons, the flight controller can only be armed from

the safety pilot’s RC transmitter.

3.2.2 Project Organization

The ROSflight project is hosted on GitHub5, and consists of two separate but related code bases:

the embedded flight-controller firmware (https://github.com/rosfligh/firmware), and the

ROS interface (https://github.com/rosflight/rosflight). Documentation is maintained

as part of the project. Links to the code repositories, documentation, and other resources are

provided at our website, http://rosflight.org/.

3.3 Design

The core ROSflight firmware flight stack is made up of several modules. This design is intended

to limit the scope of each module so that the implications of changes to any one module can be

easily understood. The module-level architecture of the flight stack is shown in Figure 3.3. In this

section, we will describe each module, its role in the flight stack and the relevant algorithms used

in its runtime processing.

5https://github.com/rosflight
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Figure 3.3: Flight stack architecture

3.3.1 Flight Management Modules

The first three modules we will discuss are the state manager, the parameter server and the

communications manager. These modules are responsible for providing an efficient and safe

environment for the control and state estimation to occur. Because of their role in managing the

operating environment, they tend to have larger scope than the other modules, and can be a little

less straight-forward in implementation. However, significant attempts have been made to limit

their complexity while still maintaining an efficient implementation.

State Manager The state manager is responsible for handling external events and system errors,

and managing the system state. “State” in this context refers to whether the system is experiencing

errors, if the system is armed, or in a failsafe condition, as opposed to the current attitude and

angular rate of the MAV, as will be discussed later. The state manager also informs all the other
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Figure 3.4: State Machine Diagram

modules of the current state of the flight controller so they can behave appropriately. There are

six discrete states and seven transition events. These states and their associated transitions are

diagrammed in Figure 3.4

Parameter Server The flight controller behavior is controlled by a number of parameters that are

configurable by the user while in the setup phase of flight, but remain constant during operation.

These parameters include controller gains, motor and remote control configuration, and sensor

stream rates. Parameters are accessible to all modules in the flight stack at any time, however,

the parameter server includes a mechanism that informs all the other modules of changes to
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each parameter to improve efficiency during runtime. The parameter server is also responsible

for informing the user of the current value of any requested parameter via the communications

manager.

As a convenience, parameters are also saved to non-volatile memory so they persist through

reboots. However, to avoid loading either a corrupt or an out-of-date parameter set, a 32-bit

checksum, the length of the parameter set, and a hash of the firmware code version history are

saved with the parameter file. Upon loading the file, these values are checked against pre-compiled

constants and if they are found to be out-of-sync, a default parameter set is loaded instead, and an

associated warning is displayed to the user.

Communications Manager The communications manager is responsible for receiving com-

mands from the companion computer and streaming sensor data. While the actual communication

protocol is abstracted to enable easy replacement, the current implementation uses MAVlink as

the serial protocol [29]. An assocated MAVlink parser is supplied for the companion computer to

decode and encode the sensor information and commands.

Communications between the computer and the flight controller take one of three forms. The

first is streaming information from the flight controller to the companion computer, such as sensor

information, or the current motor commands. This information is simply streamed to the companion

computer at some specified rate, and makes up the bulk of communication between the two devices.

The second kind of information are commands from the companion computer to the flight controller.

Some of these commands include commands to calibrate certain sensors, change a parameter, or

reboot the processor, and require an acknowledgement from the flight controller that the command

has been received and executed properly. Finally, there are streaming commands from the computer

to the flight controller. These include external attitude updates and control commands, such as the

desired roll, pitch, yaw-rate and throttle values from the companion computer. These commands

are streamed to the flight controller at some specified rate, and do not require an acknowledgement.
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All three of these kinds of commands can take place simultaneously in this system, and

emphasis has been put into enabling very high streaming rates, including streaming IMU sensor

measurements at more than 1000 Hz. To ensure that streaming messages are prioritized over

other communications during flight, many acknowledgement-type commands are disabled while

the aircraft is in the armed state. This is also a safety feature of the autopilot, as many of these

commands could have potentially disasterous conseqences in flight, such as changing the motor

mixer type or rebooting the processor.

3.3.2 Flight Control Modules

The rest of this section will focus on the rest of the modules shown in Figure 3.3. These

modules are primarily responsible for the real-time state estimation and control of the aircraft.

At a high-level, control commands are received from both the radio control (RC) transmitter

and the companion computer. These commands are merged together by the command manager,

taking into account safety pilot integration and other user-specified constraints, and given to the

controller. Meanwhile, sensor information is collected from the board abstraction layer and safety

pilot integration is provided to the state estimator, which provides the current state estimate to the

controller as well. The controller determines the desired forces and torques in the body frame, and

the mixer takes these body-frame commands and transforms them into individual motor commands,

based on the geometry of the MAV. These commands are passed back down through the board layer

to the actuators on the aircraft.

Command Manager The command manager is responsible for combining commands from the

companion computer and the remote control operator, enabling safety pilot integration and safe

testing of unproven control and estimation algorithms. The resulting command from the command

manager may be solely from the RC receiver, the companion computer, or a mixture of both (see

Figure 3.5).
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RC Companion
Computer

Command
Manager

Combined	Command

Figure 3.5: The combined command from the command manager is a mixture of the command from the RC
and the companion computer.

By default, if both RC and companion computer commands are present, the companion computer

command is chosen as the combined output. However, if the RC sticks are deviated or a lockout

switch on the RC transmitter is activated, then the RC safety pilot command is chosen instead.

In the case that the companion computer supplies no command, or no new command has arrived

within a chosen time window, then the combined command defaults to RC. Finally, if neither RC or

the companion computer supply commands, then a pre-determined failsafe command is executed

until RC communication is recovered. This logic is repeated across the four input channels, which

correspond to roll, pitch, yaw and throttle, and are treated independently during merging. This

means that a safety pilot can override just one of these channels, while keeping the other channels

under control of the companion computer. This is useful for artificially causing disturbances to

some higher-level controller, making minor corrections during flight, or very quickly recovering

control in the case of dangerous commands from the companion computer. The override switch

affects all channels, and prevents execution of any companion computer commands. This is also

helpful in the case that a prototype controller running on the companion computer does not perform

as expected and needs to be disabled immediately.

29



www.manaraa.com

Because poor controller response in throttle can be especially dangerous, the command manager

incorporates extra functionality on the throttle channel. Beyond the normal mixing that also occurs

in the roll, pitch and yaw channels, the throttle channel can be put into a mode that compares the

desired throttle value from the RC and companion computer command, and takes the lower of these

two values. This throttle saturation override provides to practical uses. First, it allows a safety

pilot to limit the amount of throttle available to the companion computer and ease this limit up as

they become more confident in the performance of a prototype control algorithm. Secondly, it also

makes recovery much more graceful, because otherwise, the safety pilot much either try to match

the throttle output of the companion computer before switching, or switch to some arbitrary throttle

value without knowing how the MAV will respond.

Estimator The state estimator is responsible for using the accelerometer and rate gyroscope

to estimate the current attitude, angular rate, and rate gyroscope biases of the MAV. ROSflight

implements the passive unit quaternion filter from [30] with some modifications from [31].

Without external position or velocity measurements, attitude is only observable under unac-

celerated conditions and the yaw-rate gyroscope bias is completely unobservable. Therefore, we

employ an external attitude update mechanism that allows the companion computer to supply an-

other estimate of attitude to the estimator, which gets fused with the accelerometer and gyroscope.

If this measurement is accurate, then ROSflight performs much better in accelerated conditions,

and the yaw-rate gyroscope bias can converge. A complete description of the algorithm used to

perform state estimation is detailed in Appendix 3.6

Controller The controller is responsible for driving the MAV to its desired state. It consumes

both the state estimate and the combined command and produces normalized desired torques and

forces. The controller can be configured to operate in one of three modes: angle mode, rate mode,

or passthrough mode. All relevant control loops use a PID-like structure as shown in Figure 3.6.
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Figure 3.6: Block Diagram for PID controller design.

In angle mode, the user supplies the desired roll and pitch angle, the desired yaw rate and

desired throttle values. Because the controller operates directly on the Euler angles, the current

roll and pitch angles are first extracted from the current estimated attitude before being consumed

by the PID control loops. Due to the Euler decomposition step, commanding extreme pitch angles

in angle mode is not advised, because the Euler decomposition will encounter a singularity at 90

degrees pitch. Rate mode control does not have this problem, but it is considerably more difficult

to operate from a safety-pilot perspective. The block diagram for the attitude-mode controller is

shown in Figure 3.6.

In rate mode, the user supplies values of desired angular rate in all three axis and throttle. The

angular rate control loops have the same structure as the attitude controllers besides for the Euler

decomposition step at the beginning, however they use a separate set of gains with the ki and the

kd gains typically set to zero.

In passthrough mode, the controller is completely bypassed, allowing direct access to the motor

mixer. This allows for direct actuator control from the companion computer or RC if required, and

is a common use case when using fixed-wing aircraft that have slower dynamics than multirotors.

31



www.manaraa.com

It should be noted that the RC and the companion computer can supply angle, rate or passthrough

commands, and that they do not have to match. That is, the safety pilot can be commanding angle-

mode commands while the companion computer is operating in rate or passthrough mode.

Mixer The mixer takes the normalized torque and throttle outputs from the controller and maps

them into individual actuator commands, depending on the location and type of actuator. For

example, a quadcopter "+" configuration requires different motor actuation from a quadcopter "×"

configuration to achieve the same torques. The motor mixing occurs by multiplying a static matrix

A ∈ Rn×4 where n is the number of actuators by the normalized force and torques such that

u = Aτ,

where τ is the column vector of normalized forces and throttle, and u is the actuator command to

each actuator, between -1 and 1 for servos, and between 0 and 1 for motors.

Because both τ and u are normalized, each row of A is also typically normalized, and can be

calculated for a multirotor MAV as follows: If ri is the vector from the center of mass of the MAV

to center of the propeller plane, ei is the unit vector in the direction of thrust, and si is the direction

of propeller rotation along ei (following the right-hand rule), then

M =


k⊤e0 . . . k⊤en

r0 × e0 + ksi . . . r0 × e0 + ksi


A = ‖M†‖row

where k is the unit vector in the z direction, (·)† is the Moore-Penrose pseudo-inverse, and ‖·‖row

is the matrix resulting from normalizing every row of the supplied matrix.
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Figure 3.7: Hardware abstraction layer and SIL

The mixer is also responsible for incorporating general-purpose inputs from the companion

computer to additional actuators not essential to flight. This allows the user to perform tasks such

as raising or lowering landing gear or dropping payloads without additional hardware.

3.4 Integration

Beyond a high-quality implementation of the flight control algorithms and associated software,

ROSflight is designed to be easily integrated into an existing hardware and software system. As

shown in Figure 3.7, the flight stack described in Section 3.3 makes all hardware-level calls through

a hardware abstraction layer (HAL). This architecture makes integrating the flight stack into new

hardware quite simple and makes true software-in-the-loop (SIL) simulations possible.

ROSflight is currently distributed with a hardware board interface to STM32F4-based flight

control boards derived from the OpenPilot F4 Revolution flight controller [32] This hardware

has become popular in first-persion view (FPV) drone racing and is therefore widely available,

inexpensive and made to a high quality standard. The F4 board layer implements functions for

reading all the associated sensors, writing to motors, serial, and USB connectivity and clock-
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related functions, such as getting the current time in microseconds from system boot. Although

this is the only board family currently officially supported by the ROSflight organization, other

flight control boards, such as STM32F1 and STM32F3-based FCUs have been made compatible

through implementing the required board-level functions. Figure 3.1 shows a multirotor MAV and

a fixedwing MAV, which both used ROSflight in visual-inertial state estimation research efforts.

Software-in-the-loop simulation is a valuable tool for researchers who wish simulations to be

as close to hardware as possible. While other flight controllers support software-in-the-loop or

even hardware-in-the-loop simulation, most of them require configuring the flight control stack

into a simulation mode. This mode changes some aspects of how the flight controller operates, and

therefore is only a partial SIL simulation. In constrast, a ROSflight SIL implementation will simply

instantiate the proper API for the HAL to operate, and (depending on processor architecture) the

same exact flight stack library that is run on hardware could be potentially linked to the simulation

for accurate simulation testing. The ROSflight flight stack does not operate any differently while

in a SIL environment, and there is no configuration to enable SIL so long as the simulation HAL

properly emulates the hardware. One notable feature of this architecture is that the HAL also

defines the means that the flight stack accesses the current time. This makes faster-than-realtime

simulations possible even in SIL, which is useful for applications such as reinforcement learning.

ROSflight is currently distributed with a HAL implementation for the Gazebo robot simula-

tor [11], however other, more visually realistic simulations have been developed which support

ROSflight SIL using the Unreal 4 and Unity video game engines such as the Holodeck simula-

tion [12] based on the Unreal 4 video game engine. Images of a ROSflight simulation in Gazebo

are shown in Figures 3.8 and 3.9, and the Unreal 4 Holodeck ROSflight SIL simulation is shown in

Figure 3.10.
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Figure 3.8: Simulated multirotor aircraft in Gazebo simulation environment running ROSflight SIL

Figure 3.9: Simulated fixedwing aircraft in Gazebo simulation environment running ROSflight SIL
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Figure 3.10: Simulated multirotor aircraft in Unreal 4 Holodeck simulation environment running ROSflight
SIL

3.5 Conclusion

ROSflight is a lightweight, flexible, easy-to-understand research autopilot designed to meet the

needs of researchers in autonomous operation of MAVs. The built-in functionality has by design

been limited to a very narrow scope to enable easy understanding and integration into other projects,

and serves as a base upon which higher-level functionality can be developed. To date, ROSflight

has been used in research efforts focused on optimal control of quadrotors (both MPC [10] and

LQR [13]), and visual-inertial Kalman Filtering [28]. However several unpublished works are

currently in progress at several organizations in areas such as distributed SLAM, cooperative

control and mapping of MAVs and GPS degraded autonomy. All of these works have required

significantly more access to sensors and actuators than are possible on other flight control systems,

and demonstrate ROSflight as a flexible research platform for control and state estimation.
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3.6 Appendix: Estimator Algorithm Description

3.6.1 Introduction

The estimator is used to calculate an estimate of the attitude and angular velocity of the

multirotor. It is assumed that the flight controller is mounted rigidly to the body of the aircraft

(perhaps with dampening material to remove vibrations from the motors), such that measurements

of the onboard IMU are consistent with the motion of the aircraft.

Due to the limited computational power on the embedded processor, and to calculate attitude

estimates at speeds up to 1000 Hz, a simple complementary filter is used, rather than an extended

Kalman filter. This method is used widely throughout commercially available autopilots. There are

a variety of complementary filters, but the general theory is the same. A complementary filter is a

method to fuse the measurements from a gyroscope, accelerometer and sometimes magnetometer

to produce an estimate of the attitude of the MAV.

3.6.2 Sensors

There are a variety of sensors available on most flight control units, but we will limit discussion

to accelerometers and rate gyroscopes. Both of these sensors are important in estimating the attitude

of an MAV.

Accelerometers Accelerometers measure all the forces acting on the aircraft. We can assume that

these forces consist primarily of forces from the propellers, but it often also consists of vibrations

from unbalanced motors and propellers, wind, ground effect, and a variety of other sources. One

thing accelerometers do not measure is acceleration due to gravity. As a result, if one holds an

accelerometer still and look at the acceleration measurement values, one will notice it measures the

forces required to hold it in place. For example, if an accelerometer sitting on a table will measure

the normal force the table exerts on the accelerometer. If we assume that the accelerometer is at
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rest (albeit a rather significant assumption for a MAV), then we can assume that the forces acting

on the accelerometer must be directly opposite gravity. Knowing then the direction of gravity with

respect to the body-fixed axes of the MAV allows us to infer the MAV’s roll and pitch angles.

As one might expect, a MAV is not always at rest, so accelerometer measurements tend to vary

as the MAV accelerates. In addition, there are often also significant high-frequency external forces

(such as vibrations induced by imbalanced propellers and motors) on a MAV in flight which adds

noise to the accelerometer measurement. We will assume, however, that these accelerations are

short-lived, and the accelerometer measurement remains stable over time.

Modern MEMS accelerometers suffer from a significant degree of temperature-dependent bias.

This can be compensated for by recording the value of the stationary bias for all axes of the

accelerometer during a temperature sweep, and performing a least-squares approximation. In

ROSflight, this approximation is first-order, and takes place on the companion computer to take

advantage of the superior computing power and ability to handle large amounts of data. Biases and

compensation coefficients are then sent and applied on the flight controller.

Rate Gyrocopes Rate gyroscopes, or gyros, on the other hand, directly measure the angular

velocity of the IMU. Gyros are not susceptible to external forces like accelerometers, and instead

measure angular velocity directly. Unfortunately, integrating gyroscopes over time to calculate

attitude would lead to unbounded drift. Common MEMS rate gyros also often have some non-zero

bias which must be corrected for their use on MAVs. This bias wanders in a stochastic manner,

and cannot be corrected entirelly through temperature compensation. It can, however, be estimated

using certain filters.
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3.6.3 Complementary Filtering

The idea behind complementary filtering is to try to get the best of both worlds of gyros

and accelerometers. Gyros are very accurate over short timescales, but they are subject to drift.

Accelerometers do not drift over long timescales, but they are noisy as the MAV moves about.

Therefore, to solve these problems, the complementary filter primarily propagates states using

gyroscope measurements, but then corrects drift with the accelerometer. In some ways, this process

is similar to high-pass filtering gyroscope measurements and low-pass filtering the accelerometer

measurements, then fusing the two together in a manner that results in an estimate that is stable

over time, but also able to handle quick transient motions.

3.6.4 Attitude Representation

There are a number of ways to represent the attitude of a MAV. Most commonly, attitude is

represented in terms of the Euler angles yaw, pitch and roll, but it can also be represented in other

ways, such as rotation matrices and quaternions. In this paper, we will refer to θ as the vector of

Euler angle values, roll (φ) pitch (θ) and yaw (ψ)

θ =



φ

θ

ψ



Euler Angles Euler angles represent rotations about sequential axes. This method is often the

most easy for users to understand and interpret, but it is by far the least computationally efficient.

To propagate Euler angles, the following kinematics are employed:

Ûθ =



1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)


ω. (3.1)
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Note the large number of trigonometric functions associated with this propagation. In a comple-

mentary filter, this will be evaluated at every measurement, and the nonlinear coupling between ω

and the attitude becomes expensive, particularly on embedded processors.

Another shortcoming of Euler angles is known as gimbal lock. Gimbal lock occurs at the

singularity of the Euler angle representation, or when θ is equal to 90 or negative 90 degrees.

The problem occurs because there is more than one way to represent this particular rotation, and

numerical errors arise in finite-precision processors as one approaches the singularity. There are

some steps one can take to handle these issues, but it is a fundamental problem associated with

using Euler angles and it motivates the use of other attitude representations.

Rotation Matrices Rotation matrices (also known as direction cosine matrices or DCMs) are

often used in attitude estimation because they do not suffer from gimbal lock, are quickly converted

to and from Euler angles, and because of their simple kinematics, given as

ÛRb
I = ⌊ωb

b/I
⌋Rb

I ,

where ⌊ω⌋ is the skew-symmetric matrix of ω, and is related to calculating the cross product as

⌊ω⌋ =



0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


,

which is much simpler and faster to compute than Equation 3.1.
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A rotation matrix from the inertial to body frame can be constructed from Euler angles via

Rb
I =



cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ sφsθ


,

and converting back to Euler angles is done with



φ

θ

ψ


=



atan2 (R32, R33)

atan2
(
−R31,

√
R2

21 + R2
33

)
atan2 (R21, R11)


.

Unit Quaternions Quaternions are a number system that extends complex numbers. They have

four elements, which we will refer to as q0, qx , q
y
, and qz. The group of unit quaternions can be

used to represent attitude, which is related to an axis-angle representation. The last three elements

can be though of as describing a unit vector β about which a rotation occurred and the first element,

q0 can be though of as describing the amount of rotation α about that axis as in

q =



q0

qx

q
y

qz



=



cos(α/2)

sin(α/2) cos(βx)

sin(α/2) cos(β
y
)

sin(α/2) cos(β
y
)



=



s

vx

vy

vz



.

While this may seem straight-forward, unit quaternions used for attitude representations must be

normalized so that they form a group. (That is, a unit quaternion multiplied by a unit quaternion

is a unit quaternion), so they are sometimes difficult to interpret from inspecting the values alone.

However, they provide some significant computational efficiencies, most of which comes from the

following special mathematics associated with quaternions.
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The unit quaternion representation of an attitude can be computed from the Euler-angle repre-

sentation with

q =



cos(θ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2)

sin(θ/2) cos(θ/2) cos(ψ/2) − cos(φ/2) sin(θ/2) sin(ψ/2)

cos(θ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2)

cos(θ/2) cos(θ/2) sin(ψ/2) − sin(φ/2) sin(θ/2) cos(ψ/2)



,

and is converted back to Euler angles with



φ

θ

ψ


=



atan2
(
2
(
q0qx + q

y
qz

)
, 1 − 2

(
q2

x + q2
y

))
arcsin

(
2
(
q0qy − qzqx

))
atan2

(
2
(
q0qz + qxqy

)
, 1 − 2

(
q2
y
q2

z

))


.

Unit quaternions are closed under the following operation, termed quaternion multiplication

q1 ⊗ q2 =


s1s2 − v⊤

1
v2

s1v2 + s2v1 + v1 × v2


,

and the inverse of a unit quaternion can be computed by negating the vector portion v as

q−1
=



q0

−qx

−q
y

−qz



.

Unit quaternions can be differenced by multiplying the inverse of one quaternion with the other, as

in

q̃ = q̂−1 ⊗ q.
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Unit quaternion dynamics are given below, as

Ûqb
I =

1

2
qb

I ⊗


0

ωb
b/I


.

What this means is that, like rotation matrices, unit quaternion dynamics are much simpler than

Euler angle dynamics and they also take less computation than rotation matrices because they

have fewer terms. In one study, complementary filters using an Euler angle representation was

twelve times as costly on average than a unit quaternion-based filter [31]. The unit quaternion

representation was also about 20 percent more efficient than a rotation matrix representation. For

these reasons, ROSflight uses unit quaternions to represent attitude in its filter.

3.6.5 Derivation

ROSflight implements the unit quaternion-based passive nonlinear observer filter as described

in [30]. In particular, we implement Equation 47 from that paper, which also estimates gyroscope

biases. A Lyuapanov stability analysis is given in [30] which shows that all states and biases, except

heading, are globally asymptotically stable given an accelerometer measurement and gyroscope.

The above reference also describes how a magnetometer can be integrated in a similar method to

the accelerometer, However, that portion of the filter is ommitted here due to the unreliable nature

of magnetometers onboard modern small UAS.

Passive Complementary Filter The original filter propagates per the following dynamics:

Û̂q =
1

2
q̂ ⊗


0

ωcomp


Û̂
b = −2kiωacc,
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whereωcomp consists of a combination of the angular rate measurement, ω̄, the estimated gyroscope

biases, b̂, and an adjustment term, ωacc, as

ωcomp = ω̄ − b̂ + kPωacc , (3.2)

and the constant gains kp and ki are used in determining the dynamics of the filter.

The accelerometer adjustment term ωacc can be described as the error in the attitude as pre-

dicted by the accelerometer. To calculate ωacc the quaternion describing the rotation between the

accelerometer estimate and the inertial frame, qacc, is first calculated as

a =
yacc

‖yacc‖
, g =



0

0

1


, γ =

a + g

‖a + g‖
, qacc =


a⊤γ

a × γ


,

where yacc is the accelerometer measurement. Next, the quaternion error between the estimate q̂

and the accelerometer measure qacc is calculated as,

q̃ = q−1
acc ⊗ q̂ =


s̃

ṽ


.

and finally, qacc is converted back into a vector ∈ R3 with

ωacc = 2s̃ṽ,

as described in [30].

Modifications to Original Passive Filter There have been a few modifications to the passive

filter described in [30], consisting primarily of contributions from [31]. Firstly, rather than simply
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taking gyroscope measurements directly as an estimate of ω, a quadratic polynomial is used to

approximate the true angular rate from gyroscope measurements to reduce error. In [31], this

process was shown to reduce RMS error by more than 1,000 times. The equation to perform this

calculation is given as

ω̄ =
1

12
(−ω (tn−2) + 8ω (tn−1) + 5ω (tn)) ,

where ω(tn−i) is the gyroscope measurement of the angular rate i measurements previous.

The second modification is in the way that the attitude is propagated after finding Û̂q. Instead of

performing first-order Euler integration as in

q̂n = q̂n−1 +
Û̂qnδt,

we use an approximation of the matrix exponential. The matrix exponential arises out of the

solution to the differential equation Ûx = Ax, namely

x(t) = eAtx(0)

and the discrete-time equivalent

x (tn+1) = eAδt (tn) .

This discrete-time matrix exponential can be approximated by first expanding the matrix expo-

nential into the infinite series

eA
=

∞∑
k=0

1

k!
Ak

and then grouping odd and even terms from the infinite series into two sinusoids. This results in

the following equation for the propagation of the filter dynamics

q̂(tn) =

[
cos

(

ωcomp



 δt

2

)
I4 +

1

ωcomp



 sin

(

ωcomp



 δt

2

)
⌊ωcomp⌋4

]
q̂(tn−1), (3.3)
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where ⌊ω⌋4 is the 4×4 skew-symmetric matrix formed from ω given as

⌊ω⌋4 =



0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0



.

External Attitude Measurements Using the ROSflight estimator with gyro measurements only

will quickly drift due to gyro biases. The accelerometer makes the biases in ωx and ωy observable

and provides a measurement of pitch and roll under unaccelerated conditions. To make yaw observ-

able, and to make attitude observable during accelerated motions, an external attitude measurement

can be provided to the estimator. This is fused in much the same way as the accelerometer, with an

additional correction term ωerr that is calculated as

ωerr = kext

3∑
i=1

R (q̂)⊤ ei × R (q̄)⊤ ei,

where ei is the unit vector in the pointing along the i-th basis vector of the standard coordinate

frame, q̄ is the externally-supplied attitude measurement and where kext = F IMU
s /Fext

s is the ratio of

the IMU sample rate to the external attitude sample rate.

When using the external attitude measurement, the composite angular rate (Equation 3.2) is

expanded to become

ωcomp = ω̄ − b̂ + kP (ωacc + ωerr)

before propagating the filter dynamics (Equation 3.3).
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Tuning The filter can be tuned with the two gains kP and kI . Upon initialization, kP and kI

are deliberately set high to quickly cause the filter to converge upon approprate values. After a

few seconds, however they are both reduced by a factor of ten, to a value chosen through manual

tuning. A high kP will cause sensitivity to transient accelerometer errors, while a small kP will

cause sensitivity to gyroscope drift. A high kI will cause biases to wander unnecessarily, while a

low kI will result in slow convergence to accurate gyroscope bias estimates.
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CHAPTER 4: OPTIMAL CONTROL OF A MULTIROTOR USING ERROR-STATE FOR-

MULATION

4.1 Introduction

In the last decade, we have seen the emergence of miniature aerial vehicles (MAVs) in everyday

life for many industries. The price and weight of processing power, sensors, and motors have

decreased dramatically in recent years and has resulted in modern MAVs being incredibly agile and

acrobatic. To highlight this point, the sport of quadrotor racing among MAV enthusiasts has seen

top speeds regularly exceeding 100 kph.

The most skilled human operators provide angular rate and throttle commands to an embedded

flight controller at a rate of 50 Hz using a radio transmitter, and often only receive feedback from

a radio video link transmitted from the quadrotor. From a state estimation and control perspective,

the abilities of human operators of MAVs are truly incredible and we have yet to see equivalent

performance by an autonomous MAV. This is due to a variety of factors including limitations

in state estimation, path planning, and control. In this work, we hope to apply the optimal

control methods infinite-horizon linear quadratic regulation (LQR) and finite-horizon linear model

predictive control (MPC) to a quadrotor to perform waypoint following, as one step towards reaching

human performance in MAV control.

There are many existing approaches to performing optimal control on quadrotors, but most of

these rely on a flight controller to perform higher-level attitude commands as opposed to the lower-

level angular rates given by skilled human operators [33–38]. Providing angular rate commands,

as opposed to full attitude control, allows for acrobatic maneuvers, outside the limitations of the

flight controller attitude control scheme. Many of these approaches developed previously rely on
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Figure 4.1: Quadrotor used for modeling

,

an Euler-angle decomposition [33–38] of the attitude or ignored attitude dynamics [39,40] to avoid

dealing with the non-vector nature of rotations. In one notable approach, [41] changes the Euler

axis representation such that the singularity occurred at ninety degrees of heading, instead of pitch

and could therefore perform acrobatics, however, even this implementation was limited in the types

of trajectories available.

While Euler angles are not a vector space [42], they approximate a vector space given a

linearization [43]. However, they suffer from a singularity when pitched to 90 degrees, suffer

from linearization error when deviated from level, and they require some book keeping to deal

with wrapped angles. Therefore, most existing optimal control problems do not actually perform

acrobatic flight where they would have to leave the linearization point used to cast Euler angles into

a vector space.

Recently there has been a movement in the robotics community to appropriately deal with the

evolution of a robot’s state along a manifold using Lie theory [44]. Though these methods have
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been widely used in the field of state estimation [45] [46], a few methods have emerged that also

apply Lie theory to control [47] [48]. We propose a formulation of the optimal control problem

that properly deals with the manifold nature of the state, specifically the attitude component. While

some methods use unit quaternions or rotation matrices to properly represent attitude, these are

also not inherently a vector space and extra steps are required to orthonormalize or otherwise force

the attitude to stay on the manifold [49] [14]. In contrast, our proposed solution is derived from Lie

theory and care is taken to ensure that all vector manipulations are done with appropriate vector

quantities so that the state remains on the manifold.

Another important consideration to good quadrotor controller design is achieving real-time

performance. Solutions to optimal control methods such as LQR and MPC are significantly

more complicated than nonlinear or PID control methods, so a lot of research effort has been

put into efficient solutions to optimal control problems. Some methods to achieve real-time

performance have included performing LQR with a fixed gain [42], or gain scheduling with a

library of LQR gains for different deviations from the desired state [49]. Some recent notable

examples include [14], which proposes re-linearizing the system at a fixed rate, slower than the

control loop and recomputing the LQR gain at this interval and [10] which achieved real-time

performance of an MPC controller using a novel matrix-free solver.

In our case, a side benefit of performing control directly on the manifold is that it not only

improves accuracy but it also vastly improves the computational efficiency. In contrast to other

methods, we are able to linearize and solve the optimal control problem at every control step.

Farrell et al. [13] used this formulation to achieve 400µs control loop rates onboard a quadrotor

during tracking.

This chapter is organized as follows: First, we will discuss the dynamics of quadrotor agents and

the specific modeling considerations used in the controller design. Next, we will derive the error-

state model used to perform optimal control over the manifold, and describe our implementation.
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Third, we will describe results from a simulation study and finally, we will discuss the potential for

future work, most of which was undertaken by Farrell et al. [13].

4.1.1 Nomenclature

pI
b/I

: Position of the MAV body frame with respect to the inertial frame, expressed in the inertial

frame.

vb
b/I

: Velocity of the MAV body frame with respect to the inertial frame, expressed in the body

frame.

qb
I

: Rotation from the inertial to the body frame, expressed in the inertial frame as a Hamilton

unit quaternion.

ωb
b/I

: Angular velocity of the MAV in body frame.

T b : Total thrust of quadrotor (in body frame).

s : Throttle signal between 0 and 1 which is used by a flight controller to control T b.

⌊·⌋× : The skew-symmetric matrix operator.

i, j, k : The orthonormal unit vectors which describe the x, y, and z axes of a standard coordinate

frame.

4.1.2 Quaternions

A quaternion q is a hyper-complex number of rank four. It is well known that a unit quaternion

∈ S3 can be used to efficiently represent attitude, as S3 is a double cover of SO(3). Quaternions have

the advantage over SO(3) of being more efficient to implement on modern hardware [31], therefore

in the software implementation of the described algorithm, we use quaternions, rather than rotation

matrices.

We use Hamiltonian notation for unit quaternions ∈ S3

q =
(
q0 qxi qy j qzk

)
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and define the complex numbers i, j, and k, such that

i j = − ji = k,

j k = −k j = i,

ki = −ik = j,

i2 = j2
= k2

= i j k = −1.

For convenience, we sometimes refer to the complex portion of the quaternion as

q̄ =
[
qx qy qz

]⊤

and write quaternions as the tuple of the real and complex portions

q =
©­­«
q0

q̄

ª®®¬
.

Given our use of the Hamiltonian notation, the quaternion group operator ⊗ can be written as

the following matrix-like product

qa ⊗ qb
=

©­­«
−qa

0
(−q̄a)⊤

q̄a qa
0

I + ⌊q̄a⌋×

ª®®¬
©­­«
qb

q̄b

ª®®¬
.

We note that rotations may be written equivalently as R
(
qb

a

)
= Rb

a , where the choice of these is

dictated by convenience. We use passive rotation matrices, meaning that the rotation matrix Rb
a

acts on a vector ra, expressed in frame a, and results in the same vector, now expressed in frame b

as

rb
= Rb

ara.
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It is often convenient to convert a quaternion q to its associated passive rotation matrix. This is

done with

R (q) =
(
2q2

0 − 1
)

I − 2q0 ⌊q̄⌋× + 2q̄q̄⊤ ∈ SO (3) .

We also need to frequently convert between the Lie group of the unit quaternion, S3, and the

Lie algebra, R3, which enables us to operate in a vector space. This is done with the exponential

and logarithmic mappings. The exponential mapping for a unit quaternion is defined as

expq : R3 → S3

expq (δ) ,


cos

(
‖δ‖
2

)
sin

(
‖δ‖
2

)
δ
‖δ‖


, (4.1)

with the corresponding logarithmic map defined as

logq : S3 → R3

logq (q) , 2 atan2 (‖q̄‖ , q0)
q̄

‖q̄‖
. (4.2)

To avoid numerical issues when ‖ q̄‖ ≈ 0, we also employ the small-angle approximations of the

quaternion exponential and logarithm

expq (δ) ≈


1

δ
2


logq (q) ≈ 2 sign (q0) q̄.

In this work, we will be modeling the quadrotor MAV shown in Figure 4.1. This quadrotor

weighs approximately 14 oz with a battery and measures 220 mm diagonally from rotor center to
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rotor center. It also uses five-inch three-blade propellers and appropriately sized motors, battery

and speed controllers.

4.2 Derivation

4.2.1 Quadrotor Dynamics

The free-body diagram in Figure 4.2 can be used to derive the dynamic model of a quadrotor

with a linearized drag constant term µ, mass M and gravity vector gI , given in Equation 4.3, and

shown in [50, 51]

Figure 4.2: Forces acting on quadrotor MAV

ÛpI
b/I
= R

(
qb

I

)⊤
vb

b/I

Ûvb
b/I
= R

(
qb

I

)
gI −

T b

M
− µvb

b/I

Ûqb
I = ωb

b/I
.

(4.3)

Both because of the fast dynamics typical of a quadrotor of this size and to mimic the inputs

available to a human operator, we will command a throttle signal and angular rates, rather than

actual forces and torques. However, we cannot command thrust directly, as the flight controller does

not have access to the motor model. Instead, we are able to command a throttle value between 0

and 1, where 1 maps to maximum thrust, 0 maps to no thrust, and a non-linear mapping in between.
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To obtain this mapping, we collected thrust and torque data on a test stand. This data is shown in

Figure 4.3 and indicates a strong quadratic relationship between throttle signal s and thrust Ti and

almost no transients.

Figure 4.3: Experimental data from thrust and torque stand. It is unclear what causes what appears to be
hysteresis in the torque and thrust plots. The two main paths are the sweep up (higher) and sweep down
(lower). The reason for this difference is unclear because the speed plot does not have the same hysteresis,
and therefore is unlikely to be due to transients in motor speed response or actual hysteresis in the motor.
One hypothesis is that the mass of air in the test stand environment introduces a lag in torque readings, as
thrust and torque are higher in static air environments. On a downward sweep, the torque and thrust are less,
because the air is already moving. Blips in the speed plot are due to sampling errors.

We performed a least-squares quadratic regression on the data shown in Figure 4.3 to solve for

the coefficients of a quadratic model for thrust versus signal, given below:

Ti =

(
aT s2

i + bT s + cT

)
k. (4.4)
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The coefficients for this model for our data set are given in Table 4.1. The total thrust simply the

sum of each of the four motors, given as

T b
=

4∑
i=0

Ti .

Modeling the applied torques for our quadrotor is slightly more complicated, as we must make

use of the geometry of each arm. Let rb
i/b

be the vector that describes the location of motor i with

respect to the center of mass in the body frame. There are two components of torque from each

motor, the first is due primarily to drag of the propeller, and is fitted with a quadratic fit from the

data shown in Figure 4.3. The second is due to the thrust of the motor acting on the lever arm

τi =

⌊
rb

i/b

⌋
×

Ti +

(
aτs2

i + bτs + cτ

)
k.

The total torque is simply calculated as the sum of torques from the four motors as

τb
=

4∑
i=0

τi .

As mentioned before, we could, in theory, use this model to control torque directly, however,

like a human operator, we are going to rely on the low-level flight controller to perform angular

rate control at much higher rates. It is unreasonable to directly control the angular velocity of a

quadrotor of this size with MPC due to computational and communication limitations. Instead, we

will convert T b to a desired throttle signal s, assuming that all motors are commanded the same

signal (the case that the aircraft is in hover).

To get s, we simply take Equation 4.4 and solve for s as follows:

T b
= 4

(
aT s2

+ bT s + c
)

0 = aT s2
+ bT s + c −

T b

4
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s =

−bT +

√
b2

T
− 4aT

(
cT − Tb

4

)
2aT

.

This calculation will return a real signal, so long as

b2
T − 4aT

(
cT −

T b

4

)
> 0

−b2
T

aT

+ 4cT < T b,

which in this case, using the values in Table 4.1 leads us to a lower-bound on T b for a valid signal

of

−4.1867 < T b.

This is not a concern for us, as this equates a value of s outside of valid bounds, which are [0, 1].

Table 4.1: Coefficients to quadratic approximation to motor response for torque
and thrust found using a least-squares regression of test data.

τ T

a 0.0010008 1.87953563
b 0.00533861 2.79829004
c 0.00074126 -0.00514948

If we substitute this expression for throttle control into the thrust term of our dynamics (Equa-

tion 4.3), we get the following expression for our quadrotor dynamics:

ÛpI
b/I
= R

(
qb

I

)⊤
vb

b/I

Ûvb
b/I
= R

(
qb

I

)
g

I −
4

M

(
aT s2

+ bT s + c
)

k − µvb
b/I

Ûqb
I = ωb

b/I
,
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and we define our state and inputs as

x =
[
pI

b/I
, vb

b/I
, qb

I

]⊤
u =

[
s,ωb

b/I

]
.

4.2.2 Error State Tracking

At this point we must face the difficulty of dealing with the quaternion attitude object. Quater-

nions are not vectors, and instead form a group. (It should also be mentioned that there is no

sensible vector representation of attitude, due to the nature of SO(3)). The large majority of non-

linear optimization solvers make the assumption that the optimization variables are vectors and

leverage efficient linear algebra routines to perform the optimization. This is not possible if we use

the group objects directly.

However, if we use the Lie algebra associated with SO(3), we can perform control in the vector

space of the difference between quaternions. To do this, we have to re-cast our problem into an

error state formulation and perform control over the error between a reference trajectory and our

current state.

In this work, our desired trajectory, x̌, is a series of piecewise-constant waypoints in the form of

a 2 meter by 2 meter square, located 5 meters above the starting position, with waypoints changed

every twenty seconds. This trajectory is not dynamically feasible (as it would require instantaneous

movement between waypoints) but is easy to calculate, and trying to achieve infeasible dynamic

trajectories actually better demonstrates the effectiveness of optimal control. Although it is outside

the scope of this work, it would be much better to generate dynamically feasible trajectories using

methods such as trajectory optimization [52–54], or approaches that leverage the differential flatness

of the quadrotor [40, 55]. The reference trajectory dynamics are the same as our normal quadrotor
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dynamics, given below for reference

Û̌pI
b/I
= R

(
q̌b

I

)⊤
v̌b

b/I

Û̌vb
b/I
= R

(
q̌b

I

)
g

I −
4

M

(
aT š2

+ bT š + cT

)
k − µv̌b

b/I

Û̌qb
I = ω̌b

b/I
,

and with our piecewise-constant waypoints, the reference inputs are the just the equilibrium throttle

to remain at hover.

ǔ =



−bT+

√
b2
T
−4aT

(
cT−

Mg

4

)
2aT

0


.

We are interested in driving the error between our desired trajectory and our state to zero. We

define the error state of some quantity y as

ỹ = y ⊟ y̌, (4.5)

where ⊟ is an appropriate difference operator, as described by [56]. For instance, if y, y̌ ∈ Rn, the ⊟

operator may be defined as the vector subtraction operator. However, due to the attitude component

of our state, the vector subtraction operator is not defined between x and x̌. We instead define the

error state piecewise for each component of the state and combine these into an error state vector

x̃ =
[
p̃ ṽ r̃

]⊤
∈ R9×1,

where p̃ is the error state associated with position, ṽ is the error state associated with velocity, and

r̃ is the error state associated with attitude.
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In our case, the error states associated with position and velocity are simply defined using vector

subtraction

p̃ = pI
b/I

− p̌I
b/I

ṽ = vb
b/I

− v̌b
b/I
,

however, the error state associated with attitude is more complicated.

It is commonly understood that any representation of attitude has three underlying degrees of

freedom. A unit quaternion has four parameters, but its error can be described in terms of three

degrees of freedom that we wish to represent as a vector quantity. In a neighborhood sufficiently

close to the identity, these behave similarly to the Euler angle representation of roll, pitch, and yaw.

However, Euler angles are not a vector because the sequential rotation method used to define Euler

angles nonlinearly couples the three degrees of freedom. Therefore, we define the vector

rb
I (t) = rb

I (t0) +

∫ t

t0

ωb
b/I

(τ) dτ,

such that rb
I
(t0) = 0 and Ûrb

I
= ωb

b/I
. With this definition, we can use (4.1) and (4.2) to express

qb
I = q̌b

I ⊗ expq (r̃)

r̃ = logq

((
q̌b

I

)−1
⊗ qb

I

)
.

Even though r is a vector, we cannot simply compute the attitude error state as r̃ = rb
I
− řb

I

because rb
I

is a minimal representation of qb
I
, which is a double cover of the Lie group SO(3).

Vector subtraction of members in this group is not valid. However, the derivative of rb
I

exists in the

tangent space of SO(3), so we can perform

Û̃r = Ûrb
I − Rb

I

(
Řb

I

)⊤
Û̌rb

I , (4.6)
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where Rb
I

(
Řb

I

)⊤
transforms the desired vector derivative, Û̌rb

I
, from its own tangent space to the

tangent space of Ûrb
I
. With both vectors in the same tangent space, the vector subtraction in (4.6) is

valid.

For use in control, we similarly define an error state for the control input with the error state

being the difference between the current control input and some reference input. Using the same

definition as in (4.5), we can see that

s̃ = s − š

ω̃ = ωb
b/I

− ω̌b
b/I

where š and ω̌b
b/I

are respectively the reference throttle signal and reference angular velocity. Note

that we do not model the dynamic response to these inputs. Instead, our model assumes that the

quadrotor instantaneously reaches any commanded throttle and angular velocity.

Using the error state definitions above, we can derive the error state dynamics of the quadrotor

as

Û̃p =
(
Rb

I

)⊤
ṽb

b/I
−

(
Rb

I

)⊤ ⌊
vb

b/I

⌋
×

r̃b
I

Û̃v = ⌊R (q) g⌋× q̃ −
4

M

(
aT s̃2

+ (2aT s + bT ) s̃
)

k − µ
(
I − kk⊤)

ṽ

Û̃r = ω̃b
b/I

−
⌊
ωb

b/I

⌋
×

r̃b
I . (4.7)

We now can define the input to our error state system as

ũ = [s̃, ω̃]⊤

where, as before

ũ = ǔ − u.
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In performing optimal control, we will make frequent use of the Jacobians of Equation 4.7

A =
∂ f

∂x̃
and B =

∂ f

∂ũ
:

A =



0 R (q)⊤ −R (q)⊤ ⌊v⌋×

0 −µ
(
I − kk⊤

)
⌊R (q) g⌋×

0 0 − ⌊ω⌋×



B =



0 0

− 4
M
(2aT s̃ + 2aT s + bT )k 0

0 I


.

4.2.3 Linear Quadratic Regulator

A linear-quadratic regulator provides the optimal state space controller gains for an LTI system

given by

Ûx = Ax + Bu,

assuming full-state feedback. We define the cost-to-go for the infinite-time solution as

J(x, u) =

∫ ∞

0

(
x⊤Qx + u⊤Ru

)
dt (4.8)

with Q and R being positive definite matrices that define the costs associated with the state and the

input. The cost function given in (4.8) is minimized by the control input

u = −Kx,

where K is given by

K = R−1B⊤P,
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and P is the solution to the continuous-time algebraic Riccati equation (CARE),

A⊤P + PA − PBR−1B⊤P +Q = 0.

It should be noted that in its basic form, the LQR problem attempts to drive the state to zero in

an optimal way. If the desire is for the system to reach a desired state, x̌, then we use our error state

definition

x̃ = x ⊟ x̌

and compute the error state control input

ũ = −K x̃,

which we either augment with an integrator or by applying a model-based feed-forward control

input,

u = ũ + ǔ

= −K x̃ + ǔ.

4.2.4 Model Predictive Control

Another, more general, form of optimal control is model predictive control, or MPC. In this

work we will also implement linear model predictive control (L-MPC) with a finite horizon of N

time steps. In this problem we wish to solve

min J =

N∑
i=t

x̃ [i]⊤ Qx̃ [i] + ũ [i]⊤ R [i] ũ [i]

s.t. x̃ [i + 1] = x̃ [i] + dt
(
A|x[t]x̃ [i] + B|u[t],ũ[t]ũ [i]

)
,
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
0

−ωmax


< u <


1

ωmax


. (4.9)

While MPC has greater flexibility than LQR in terms of its constraints, it comes at significant

computational cost. Instead of solving the CARE, we must resort to sequential quadratic program-

ming (SQP). This has made achieving real-time performance of MPC a significant challenge in

previous work.

Similary to the LQR implementation, solving the MPC problem gives us our error state input

ũ. At each control step, we solve the full MPC problem, but take the error state input for the first

time step in the horizon and add our feed-forward input from the trajectory to get our control input

that we provide to the flight controller as:

u = ũ[t] + ǔ.

4.3 Implementation and Results

In this section, we report on simulation results of both the LQR and L-MPC formulations. The

simulation environment was written in C++, utilized a nonlinear drag model, and the same thrust

model used in our dynamics. We used a time step of 0.002 s for the simulation and performed

on-manifold RK4 integration between time steps. Additive acceleration noise was applied to the

simulated quadrotor to simulate small wind disturbances similar to those observed in real hardware.

The simulation study was done on a laptop with an i7-8750H CPU and 16 GB of RAM. The MAV

was given 20 seconds to reach each waypoint before the reference trajectory was changed to a new

waypoint.
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4.3.1 LQR Implementation

The LQR problem is solved at every time step using the closed form, sorted Schur decomposition

method [57], and the updated gains are then applied to the current error-state estimate to produce

the desired output.

Although we relinearize and solve the CARE at each time step, the Q and R gain matrices are

fixed. We choose these gains based on Bryson’s rule [58]. As an important note, we achieved

the best results by saturating the error-state in accordance with the maximum error terms used to

choose the gains with Bryson’s rule prior to computing the control as

ũ = −Ksat (x̃) .

4.3.2 MPC Implementation

The convex optimization library CVXGEN [59] was used to solve the MPC problem. To strike

a balance between computational load and robustness, the optimization time horizon was set to 10

timesteps, and the MPC problem (Equation 4.9) was discretized at 0.05 s intervals, which means

that the horizon covered 0.5 s.

4.3.3 Results

Both the LQR and MPC implementations were run in identical simulations and the results of

these runs are shown shown in Figures 4.4-4.7. These results show clearly the differences between

LQR and MPC. In this simulation, the trajectory is quite aggressive, so despite both controllers

being tuned similarly, the LQR solution is not as good at tracking the trajectory as the MPC

controller. This is because MPC is better able to handle the saturated inputs and compensate

for these saturation limits with other actuators. LQR is not aware of the actuator saturation, so

it performs worse when the trajectory has discontinuities. Despite this difference, LQR remains
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Figure 4.4: Simulated position response for MPC and LQR controllers

stable, and reaches the desired waypoints at about the same time as MPC, just with considerably

more overshoot. As one might expect, LQR performs virtually the same as MPC during the steady-

state condition after the waypoint has been reached several seconds after a waypoint transition. This

happens because LQR and MPC have almost identical cost functions and therefore nearly identical

solutions when the inputs are not near saturation.

Another interesting comparison is the time required to compute each algorithm, shown in

Figure 4.8. The LQR solution is about twice as fast as MPC to solve, and the maximum time

for LQR is also about half the maximum time of MPC. While this may be important for some

computationally-constrained platforms, this MPC implementation is still extremely fast, even ex-

ceeding some state-of-the-art LQR methods [14]. Based on this performance, we would likely

recommend using the MPC configuration because it comes with the better trajectory tracking per-

formance shown in these results and the computational cost, while still double LQR, is almost

inconsequential for most modern processors.
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4.4 Conclusions

This paper derives the error state dynamics for a quadrotor so that we could perform optimial

control on the SO(3) manifold. This method is extensible to any reference trajectory and operates

at real time on even computationally constrained platforms.

Future work would include generating smooth feasible trajectories (instead of static waypoints)

which could include potentially inverted flight sections. This would exercise the strength of the

manifold parameterization because there are no singularities, as opposed to the more common

Euler-angle based approaches. Much of this work was extended by [13] where the LQR controller

developed here was demonstrated in hardware experimentation and shown to meet expectations.

The MPC controller has yet to be implemented in hardware and doing this is a clear area of future

work.
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CHAPTER 5: CUSHIONED EXTENDED-PERIPHERY AVOIDANCE: A REACTIVE OB-

STACLE AVOIDANCE PLUGIN1

5.1 Introduction

As technological advancements push to meet the size, weight, and power (SWAP) constraints

imposed by micro air vehicles (MAVs), exciting applications become possible. Unfortunately the

sophistication of estimation and control laws do not yet meet the safety, reliability, and robustness

required for full integration into society. One open field of research is autonomous multirotor flight

in unknown, dynamic, tightly confined, and cluttered environments.

As illustrated in Figure 5.1, path planning and obstacle avoidance algorithms generally ad-

dress three objectives: avoiding collisions, facilitating stable flight, and accomplishing a mission

or goal. This field of research is well developed, particularly in the context of ground robots.

Because a ground robot can generally pause as needed, often the literature assumes a static, known

environment. Further, due to the slow, stable dynamics of ground vehicles, disturbances, like

wind will rarely induce collisions. These factors, in conjunction with less restrictive weight and

computational power constraints, motivate the literature’s primary emphasis on the optimal, or at

times suboptimal, accomplishment of goals with respect to some specific cost function (item 3 in

Figure 5.1).

Generally a global map, represented in a Cartesian coordinate frame, is provided to the path

planner. This map comes from a priori data or from fusing sensor information using Simultaneous

Localization and Mapping (SLAM) techniques. For example a 2-D obstacle map can be created as

1This paper was written by James S. Jackson, David O. Wheeler, and Timothy W. McLain, and published in the
International Conference on Unmanned Aircraft Systems in 2016 [60]
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Avoid Collisions

- Dynamic, cluttered, tight environments

Smooth, Stable Flight

- Mitigate unmodeled disturbances

Accomplish Mission

- Optimal with respect to cost function

1

2

3

Figure 5.1: MAV priorities in general. Avoiding collisions, even when they violate environment assumptions,
is of paramount importance. Of secondary importance is smooth, stable flight, mitigating destabilizing
disturbances. Accomplishing the desired mission should generally not come at the expense of items 1 and 2.

a series of body-fixed, polar laser scans are transformed into a global, Cartesian coordinate frame

and fused based on sensor and state uncertainty estimates [61].

Given a map, obstacle-free paths are found through the environment using one of several

methods. Potential field methods create artificial forces away from obstacles and towards goals [62].

These methods are generally simple and quick to calculate, but suffer from local minima and cannot

guarantee obstacle avoidance. The probability road map (PRM) can be used to randomly generate

waypoints connecting the agent with the goal in a manner to avoid obstacles [63], but is designed

for use by holonomic agents. Rapidly-exploring random trees (RRT), a modification of PRM

uses a similar obstacle-free waypoint path planning technique, while taking into account kinematic

constraints of the vehicle. More robust algorithms such as D* Lite [64], can be used to heuristically

find the shortest path to the goal through the environment.

While derivatives of these approaches have proven to be effective at fusing sensor measurements

and calculating safe paths through the environment, they can incur significant computational,

memory, and sensing requirements, and often assume the agent is unaffected by disturbances while

safe paths are calculated. While these assumptions may be valid for ground robots and MAVs flying

in spacious environments, this problem can become difficult to solve quickly enough to effectively

react to large disturbances and errors in environment estimation during autonomous flight in tight

quarters.
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As an alternative to map-based planning, some simple and efficient algorithms use the concept

of optical flow to demonstrate effective corridor-centering [65] and obstacle avoidance [66]. Other,

more sophisticated methods use this type of data combined with other monocular features to train

agents to avoid obstacles based on input data generated by an expert pilot [67]. These methods have

also been demonstrated to be effective in avoiding obstacles during MAV operation but require

consistent forward motion to generate meaningful features required by the controller.

In response, we outline the reactive obstacle avoidance plugin (ROAP) framework in Section 5.2

and propose a new reactive algorithm, cushioned extended-periphery avoidance (CEPA) in Sec-

tion 5.3 as a specific implementation of this framework. We present simulation and hardware

results of CEPA and the ROAP architecture in Section 5.4 and conclude in Section 5.5.

5.2 ROAP Motivation

In the ROAP framework, a high-level planner uses any map-based approach to plan smooth

paths through a known environment while a reactive obstacle avoidance algorithm is implemented

underneath to recover from disturbances or estimation errors, as illustrated in Figure 5.2. In this

way, an efficient reactive obstacle avoidance algorithm can match the rate of the sensor with minimal

latency, improving robustness in dynamic, cluttered, and tight environments with non-negligible

disturbances. This provides the high-level path planner the time to account for changes in the

environment, such as a recently closed door or moved obstacle, and plan an alternative feasible

path. While a reactive obstacle avoidance plugin may cause the path to become suboptimal in a

precarious environment, it requires much less in terms of computational and sensor capabilities,

and is effective in real-life testing [68–71].

Clearly, in this configuration, a reactive obstacle avoidance may take action that prevents the

completion of a global mission but ensures that the MAV does not damage itself or the environment.

This concept parallels the MAVs priorities, illustrated in Figure 5.1, where in general, avoiding

collisions and maintaining stable flight is of paramount importance. This is particularly relevant
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(MBPP)
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u ǔ
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Figure 5.2: Block diagram illustrating how ROAP supplements an existing path planner by modifying
commands. The inner control loop rate matches the sensor rate with minimal latency, thereby improving
robustness in dynamic, cluttered, and tight environments with non-negligible unmodeled disturbances.

in environments when sensors perform poorly, such as during GPS-degradation or in featureless

scenes, and in the presence of disturbances, such as wind or ground and wall effect.

For a ROAP implementation to be robust, the algorithm must exhibit the following properties:

1. Fast response, i.e. low latency, high bandwidth.

2. Independent of a priori or outdated information.

3. Limited memory/computation requirements.

4. No motion assumptions (e.g., constant motion, only forward motion).

5. Safe commands despite erroneous, outdated, or absent high-level goals.

Scherer et al. were first to propose a ROAP algorithm in their paper flying fast and low among

obstacles (FFLAO) [68] and demonstrated impressive hardware results using a laser scanner.

While accounting for the first three properties by responding quickly to the most recent obstacle

information, FFLAO constrains the MAV to move only in the direction of the sensor, limiting the

MAV to forward and yawing motion alone. While this assumption works under ideal conditions,

we have found that this assumption makes safe navigation difficult in tight environments or in the

presence of infeasible goals where hovering, reversing and lateral motion are often necessary.
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Since FFLAO, Oleynikova et al. has presented a compelling ROAP implementation using

stereo vision [69], stressing the importance of low computation requirements. Schopferer et

al. has presented a novel decoupled iterative planning method [72] that achieves near-optimal

reactive avoidance under computational limitations by considering the kinematic feasibility of

planned trajectories. Hrabar presented a method that blurs the line between reactive and map-based

obstacle avoidance [71] by keeping a local memory of the environment in the form of a 3D voxel

grid and searching for a feasible path using PRM. While the ability to hover is added in this

method, it focuses primarily on extending the field-of-view of the sensor, rather than extending

the possible maneuvers of the MAV to include lateral and reverse motion. While these methods

are all accompanied by impressive results, they are subject to most or all of the same motion

constraints found in FFLAO. To address this concern, we present the cushioned extended-periphery

avoidance (CEPA) algorithm, which extends these previous methods to allow for safe operation of

MAVs in tightly constrained environments in the presence of infeasible goals and non-negligible

disturbances.

5.3 CEPA Algorithm Description

The algorithm addresses two main issues related to safe autonomous MAV operation:

1. Guide the MAV around obstacles towards waypoints chosen by the high-level planner.

2. Apply additional control in emergency situations if the MAV comes too close to an obstacle.

Typical path planning approaches use a Cartesian coordinate or graph-based system, either iterating

through each coordinate or node to form a cost map [73,74]. CEPA, like FFLAO, performs planning

in the polar, body-fixed, sensor frame of the laser scanner. Further, CEPA analytically inflates the

proposed path in polar coordinates. As a result, the path can be verified for obstacles by a simple

differencing in the polar domain. These two features reduce computational load and algorithm

latency.
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To remove limiting motion assumptions, CEPA efficiently fuses recent laser scans to create a

lower-bound, 360◦ sensor view. Like [71], this approach blurs the line between a purely reactive

avoidance method and a map-based method, which could potentially reduce the reactive nature of

the algorithm. However, without a 360◦ sensor or some level of local memory, necessary lateral

or reverse movement cannot be executed safely. A small amount of local memory provides some

of the environmental awareness of a map-based planner while maintaining the responsiveness of

a reactive planner. CEPA expects velocity commands from a high-level planner and then outputs

modified velocity commands, as needed, given input from the most recent laser scans, as shown

in Figure 5.2. With this architecture, CEPA can be paired with any high-level path planner which

outputs body-fixed velocity commands without modification.

CEPA is derived in two dimensions primarily due to the sensing capabilities of traditional laser

scanners. This assumes relatively planar motion in a structured environment, which is often the

case for indoor operation of MAVs. To extend CEPA to 3D operations, CEPA could either be

layered in cylindrical coordinates or performed entirely in spherical coordinates. Because CEPA

leverages the computational benefit of operating directly in the sensor frame, the choice of 3D

coordinates should likely mimic the coordinates of the 3D sensor.

5.3.1 Steering Algorithm

The steering algorithm is designed to choose commands that are most like the commands

provided by the high-level path planner, but that also safely avoids obstacles. To accomplish

this, CEPA computes a cost function which balances modification of an incoming command with

proximity to observed obstacles.

First, a suitable path must be in approximately the same direction and approximately the same

size as the incoming command when feasible. This can formulated by maximizing the weighted

sum of the inner product and the relative size of the goal vector v and the outgoing command v̌,
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v

v̌

rUB rLB

Figure 5.3: An example steering configuration. v is the obstacle-laden goal vector supplied by the path
planner. CEPA identifies v̌ as the minimum-cost, collision-free command and passes it to the controller.
The heading discrepancy and the obstacle intrusion into the outer safety cushion induce costs shown in red.
The proposed path is deemed feasible because the inner safety cushion is not penetrated. While the figure
illustrates a Cartesian representation, CEPA works in the sensor’s polar coordinate frame.

expressed by

k1
(
v⊤v̌

)
+ k2

‖v̌‖

‖v‖
. (5.1)

Secondly, the degree of interference for the proposed command is calculated by projecting

two elongated safety cushions onto the polar map, with fixed look-ahead time T . As illustrated in

Figure 5.3, a lower-bound safety cushion of radius rLB defines the minimum required separation

distance for a feasible path. An upper-bound safety cushion of radius rUB defines where obstacles

begin to influence commands. A safety cushion for a given radius r at specified bearing angle φ is
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defined analytically as

SCr(φ, v̌) =




r csc φ φ ∈ [γ, π2 )

r φ ∈ [ π2,
3π

2
]

−r csc φ φ ∈ (3π
2 , 2π − γ)

d cos φ +
√

r2 − d2 sin2 φ φ ∈ [2π − γ, γ)

, (5.2)

where d = ‖v̌‖ T is the look-ahead distance and γ = atan2(d, r). Note that Equation 5.2 assumes

v̌ is directed towards φ = 0. Rotating the safety cushion is as simple as shifting the indices of the

polar array containing the N returned range measurements.

The lower-bound safety cushion, SCLB, is an estimate of the space the MAV will occupy during

the execution of the command for the look-ahead time T . Any conflict with this inner cushion

renders the proposed command invalid. The larger cushion, SCUB, acts as a buffer region that

may become occupied during the execution of a valid command, but during general operation

should remain free. Like a deformable ball, the proposed path will respond to minimize intrusions,

guiding the MAV away from obstacles. The extent of the intrusion is found by differencing the

safety cushion and laser scan at each angle LS(φi), after masking the array to only regard potential

conflicts. A discrete integral can then be used to model the amount of intrusion into the safety

bubble for a potential command given a recent laser scan

Ω (v̌|LS) =

N∑
i

κ (φi |v̌, LS) , (5.3)

where

κ (φi |v̌, LS) =




∞ LS(φi) ∈ [0, SCLB(φi)]

f (SCUB (φi) − LS (φi)) LS (φi) ∈ (SCLB (φi) , SCUB (φi))

0 LS (φi) ∈ [SCUB (φi) ,∞)
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and f (x) is any positive definite function for x > 0. In our implementation, f (x) = x2.

A weighted sum of Equations 5.1 and 5.3 forms a cost function whose minimum is the command

which is passed to the controller. Using a polar coordinate frame simplifies the cost function

sufficiently that even a brute-force method is capable of solving the optimization as fast as the

incoming laser scan measurements, typically 10 to 40 Hz:

v̌∗ = arg min
v̌

[
k3Ω (v̌) − k1

(
v⊤v̌

)
− k2

‖v̌‖

‖v‖

]
.

The relative size of gains k1, k2, and k3 can be adjusted for required performance. If k3 is

chosen to be larger than k1 and k2, CEPA will prefer to deviate from the planned path to ensure

safety. A large k3 makes the safety cushion inelastic, responding rigidly to approaching obstacles,

while a smaller value will provide a softer response. The relative size of k1 and k2 will determine

how CEPA responds to path deviations. If k1 is larger than k2, then CEPA will prefer changing

direction to slowing down and vice-versa.

5.3.2 Map Memory

Applying a command in a direction that is not currently observed is inherently presumptuous.

Previous ROAP algorithms [68–70] assume that it is always possible to find a viable path while

maintaining forward motion. It is not uncommon, however, that a MAV needs to move in a direction

in which it is not receiving measurements, such as overshooting a position goal or counteracting a

disturbance propelling the vehicle forward. While it is possible to perform large yawing motions

to always look in the direction of motion, the control delay makes rejecting disturbances in tight

environments impossible.

As an alternative to colliding, some measure of memory must be integrated to ensure that the

MAV does not move into objects that it has seen previously, but cannot currently observe with its
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sensor. This can be done by extending the vehicle’s peripheral vision. The reactive planner should

not, however, provide a full-resolution map of the explored environment due to computational

constraints, but enough to ensure safe navigation.

To do this, some number of previous laser scans and the estimates of the relative transform

between each, are saved as a queue in the reactive avoidance memory. In the event that backward

motion is necessary, previous laser scans are transformed to be with respect to the current body

frame, augmenting the current sensor measurement. If the MAV has moved forward recently, then

the concatenation of even two 180 degree laser scans provide some 360◦ understanding of the

environment, as illustrated in Figure 5.4. With this information, the MAV can more confidently

execute commands which are not directly in the field of view.

This approach does not extend the field of view of the sensor, but rather assumes, (1) an

object has not recently approached the MAV from the rear, and (2) accurate transform estimates

are available. For a more conservative memory estimate, the covariance of the transforms can be

used to provide the nσ worst-case transform. Further, these covariances can be set to grow with

time, shrinking the assumed distances to obstacles in the rear 180 degrees. This results in more

conservative navigation, but also is more taxing on the processor during memory updates.

5.3.3 Emergency Avoidance

In some cases, a disturbance may cause an obstacle to penetrate the MAVs lower-bound safety

threshold rLB. In keeping with the proposed priorities presented in Figure 5.1, the command

provided by the map-based path planner is temporarily ignored as emergency action is taken.

As illustrated in Figure 5.5, the periphery-enhanced 360-degree obstacle map is filtered such

that

dρ

dφ
≤ K ,
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Figure 5.4: A visual description of the way memory is kept in the reactive planner. Although the MAV
can only observe obstacles in the direction of the current 180◦ laser scan (blue-solid), appending previous
laser scans gives the MAV a limited 360◦ understanding about the entire shaded area and allows the MAV to
safely move backwards

where K represents the maximum-allowable slope in polar coordinates. For each obstacle detected

within rLB a small avoidance vector is formed pointing towards the MAV, proportional to the extent

of the intrusion. The summation of these small vectors forms the final command v̌. Filtering is

critical to ensure that small obstacles are not overpowered by large obstacles in the map. Both small

and large obstacles produce commands on similar orders of magnitude given they intrude the same

amount into the cushion. In this way, the cushion models the physical response of a deformable

ball. With a 360◦ understanding provided by the map memory, this command can be executed with

some level of confidence in any direction.

5.4 Experimentation and Results

CEPA was implemented in ROS [75] and tested in a Gazebo simulator, adapted from [76], and

on a hexacopter platform. The simulation parameters paralleled the hardware (3.81 kg, 1.0 m outer

diameter). A 40 Hz Hokuyo UTM-30LX laser range finder with a 30 meter range and 180 degree

field of view was used for obstacle detection and modeled in the simulator.

A PID velocity controller, using the multirotor model-inversion technique presented in [55]

was used to control the system. Yaw was controlled with an under-damped proportional controller,
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v̌

rLB

Figure 5.5: Illustration of emergency avoidance. The red line represents the 360◦ filtered obstacle map
when K = 0.01. The summation of the individual red avoidance vectors forms the final command v̌.

causing the laser scanner to generally be oriented in the direction of commanded motion. The

following CEPA gains were used: k1 = 1, k2 = 1, k3 = 4, T = 4 s, K = 0.01, rLB = 0.55 m,

rUB = 1.0 m, and f (x) = x2.

During each simulation experiment, wind was modeled as a succession of applied forces

with a normally distributed magnitude, N(1N, 0.5N2), and uniformly distributed direction. Wind

magnitude and direction were recalculated according to a Poisson process with 1
λ
= 10 seconds.

These wind model parameters were selected to mimic the significant wall effect that large multirotors

experience in tight environments.

FFLAO, defined in [68] was also implemented in 2D for comparison. It was implemented with

gains kg = 10.5, ko = 0.8, c1 = 1.0, c2 = 0.25, c3 = 1.0 and c4 = 1.0. It should be noted that this

algorithm has demonstrated success in more than 700 flight tests and at speeds exceeding 10 m/s,

but due to motion assumptions and constraints it is not designed for operation in tightly confined

environments with non-negligible disturbances. It was implemented as a comparison to motivate

the relaxation of motion constraints necessary in these types of environments.
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Table 5.1: Simulation results for scenario 1.

FFLAO CEPA
Completion Rate 0.2188 0.9863

Average Duration (s) 71.61 63.54

5.4.1 Simulation Results

Two tightly-constrained environments were used to validate the algorithm. The first environ-

ment, shown in Figure 5.6 consists of a dense grid of cylinders requiring tight maneuvering. While

the high-level path planner commands the MAV directly towards the goal, each respective ROAP

algorithm modifies the commands to autonomously navigate through the environment. Each algo-

rithm was tested 1500 times. The supplied high-level command had a magnitude between 1.0 m/s

and 5.0 m/s and was directed towards the goal. However, regardless of the commanded magnitude,

as the multirotor entered the cluttered environment, both CEPA and FFLOA reduced the outgoing

command to close to 0.8 m/s to maintain safe flight throughout the course. The collision-free

success rate and average flight duration of successful flights taken for the MAV to autonomously

navigate safely through the several environments and reach its goal are recorded in Table 5.1.

As can be seen from Table 5.1, placing a constraint on lateral velocity causes performance to

suffer in our tightly-confined environment with non-negligible disturbances. This is largely because

when moving through such a tightly-confined environment, forward velocity, u, must be kept low.

This gives opportunity for disturbances to induce non-negligible lateral velocity which must be

corrected in order to avoid collisions. With a constraint on lateral velocity, the MAV is much slower

at correcting these errors because it must induce large yawing motions, and therefore is unable to

fly safely. CEPA, on the other hand, is able to handle these disturbances because of its ability to

move the MAV in any direction to avoid collisions.

The second environment simulates the scenario where a high-level path planner commands

an infeasible goal and the obstacle avoidance must prevent the MAV from crashing until a proper

goal is received. Specifically, we explored the scenario when a goal is placed on the far side of

82



www.manaraa.com

2m

0.5m

1m

Figure 5.6: Scenario 1: A grid of densely positioned cylinders obstruct the MAV’s path between the start
and goal positions represented as blue pillars. The high-level path planner commanded a 1m/s velocity
directly towards the goal at all times during the test. The blue line is the original infeasible path planned
by the high level path planner, while the yellow line is the path ultimately taken by the MAV as a result
of CEPA intervention. The red arrow is the current high-level command. The green arrow is the modified
CEPA command with the magenta safety cushion shown.

recently closed door, as shown in Figure 5.7. After recognizing the obstruction, the avoidance

algorithm was required to correct the commands for 30 seconds until an alternative route was

provided. This second scenario was tested 50 times. In each trial, the CEPA algorithm enabled

the MAV to successfully pause at the door, accounting for all disturbances while waiting for an

updated plan. FFLAO, however, was never able to complete the task because its imposed motion

constraints disallowed backward motion. As the MAV approached the closed door, it correctly

stopped forward motion, but was unable to correct for any disturbance.

The average latency of CEPA was 2.9 ms with a standard deviation of 1.6 ms. Calculations were

easily available at the laser scanner’s bandwidth of 40 Hz even using a brute-force optimization

method.

5.4.2 Hardware Results

To definitively understand its effectiveness, CEPA was exercised in hardware. Flight test

computation was performed using an onboard Intel i7 computer with a 2.4 GHz quad core processor

and 16 GB of RAM. To emphasize the light-weight nature of CEPA, avoidance was restricted to use
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GoalStart Closed
Door

Figure 5.7: Scenario 2: The high-level path planner commands an infeasible path due to a recent environment
change. The ROAP block must maintain safety while a new path is planned.

less than 1/16 of the available processing time. State estimation was performed using the relative

multiplicative extended Kalman filter described in [77] provided with position measurements from

an RGB-D visual odometry algorithm described in [78]. No external positioning system or off-board

processing was required.

The MAV was placed in scenarios which isolated three particular challenges:

1. Selecting an appropriate path around several obstacles.

2. Taking action to avoid a previously observed obstacle when is no longer in the field of view.

3. Preventing collision when provided and infeasible goal.

Challenges 1 and 2 were addressed in the first scenario, where the MAV was placed in a wide

hallway with two large obstacles in the middle, as shown in Figure 5.8. The high-level path

planner continuously provided commands at 0.8 m/s directly towards to the goal, while CEPA

correctly chose a safe path around the obstacles and arrived at the goal. During this flight, after

navigating around the first obstacle, estimation errors and disturbances caused the MAV to be

pushed backwards towards the first obstacle. Although the MAV was oriented towards the goal,
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MAV

Goal

Figure 5.8: Hardware validation of CEPA in a GPS-denied environment using strictly onboard computation
and sensing.

and could no longer directly see the first obstacle, it responded correctly by commanding additional

control away from the unseen obstacle behind it. After avoiding the first obstacle, the MAV then

navigated around the second obstacle and to the goal without further issues. During the test, the

MAV maintained a distance of at least 0.1 m from any obstacle, successfully completing the task

with no user input.

In the second scenario, the high-level path planner commanded the MAV directly through a

flat wall for 5 seconds, very much like the closed-door simulations performed previously. In this

demonstration, however, there was no feasible way to reach the goal. During this test, the MAV

reached a minimum distance of 0.1 m from the wall, and after some damped oscillatory movement,

hovered stably 0.5 m from the wall. Videos of the simulation and hardware demonstrations are

available at https://youtu.be/35Og9PYwXOI.

85

https://youtu.be/35Og9PYwXOI


www.manaraa.com

5.5 Conclusions

We have outlined the reactive obstacle avoidance plugin framework, which allows for high-

bandwidth, low-latency control corrections to improve MAV robustness. This method allows

SWAP constrained MAVs to robustly leverage map-based path planners, generally designed for

ground robots in static, known environments, while mitigating disturbances and avoiding collisions.

To demonstrate the effectiveness of this framework, we have presented the cushioned extended-

periphery avoidance algorithm. CEPA relaxes motion assumptions common in other reactive

path planners, allowing for more confident control in tight environments with non-negligible

disturbances. By working in the laser scanner’s polar coordinate frame, and by incorporating

previous laser scans, safe controls can be efficiently computed despite erroneous, outdated, or even

absent high-level goals.

Future work includes improving the safety cushion lookahead window by incorporating the

MAV’s dynamics (e.g., momentum) and allowing trajectory based inputs as well as extending

CEPA to three dimensions. Developing a fast, camera-based ROAP algorithm without limiting

motion assumption remains an open problem. Current work also includes more extensive hardware

testing, especially in the presence of moving obstacles.
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CHAPTER 6: IMPROVING THE ROBUSTNESS OF VISUAL-INERTIAL EXTENDED

KALMAN FILTERING1

6.1 Introduction

Visual-inertial (VI) navigation is becoming an increasingly important tool for autonomous

operation of miniature aerial vehicles (MAVs) and other robotic agents. While many missions

can be performed using GPS or other global measurements to constrain drift, there are numerous

scenarios that do not have reliable access to these global measurements. For example, a camera

and MEMS IMU can provide a low-cost way to autonomously navigate, and visual camera features

provide a method to constrain IMU drift, while also making sensor biases observable for accurate

integration.

Recent results in this area have demonstrated remarkable performance and capability [79–84].

While smoothing methods and nonlinear batch optimization-based methods [85–87] have demon-

strated significant advantages in terms of accuracy and consistency, they can be too computationally

intense for many low-cost platforms. Filtering approaches have the advantage of being computa-

tionally efficient but can struggle in certain situations, due to significant nonlinearities and unob-

servability [6, 7, 51]. This paper discusses filtering techniques for VI estimation that significantly

increase robustness to these issues.

One major source of unobservability in VI filtering is the parameterization of feature locations.

Feature locations parameterized in an inertial coordinate frame typically assume observability of

the transform to that frame. In many situations, however, this transform is unobservable, and

estimation becomes inconsistent [6, 7, 51]. Recent methods have shown how to estimate features

1This paper was written by James Jackson, Jerel Nielsen, Tim McLain, and Randal Beard. It was and presented at
the International Conference of Robotics and Automation (ICRA) in 2019
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Figure 6.1: A sample trajectory from the Monte Carlo simulation experiment.

in the camera frame, rather than an inertial frame [80]. These parameterizations partition the

states cleanly into observable and non-observable states, with global position and heading being

completely unobservable. The unobservability of position and heading can be handled using the

method proposed by [51], where the position and heading states are periodically reset, so that they

remain observable and consistent. The global state and uncertainty are then calculated using other

methods such as batch optimization, which are external to the Kalman filter.

Finally, many visual-inertial estimation approaches assume no knowledge about certain aspects

of the system dynamics. In some applications, knowledge of specific parts of the system dynamics

can help improve estimation accuracy and prevent divergence in certain modes at the expense of

becoming less portable to other systems. [50, 88] For example, information regarding the speed

capabilities of a multirotor aircraft can bound changes in estimates of depth to visual features.

Leishman et al. [50] showed that including a linear model of drag on a multirotor significantly

improves estimation accuracy. We will use this model to improve estimator robustness in this work.

Another source of nonlinearity and unobservability is the presence of filter states that are only

partially observable or unobservable given specific vehicle motion. Examples of these states include

IMU biases, depth to features and the above mentioned linear drag term. Brink [89] has shown

that using a partial update can improve filter robustness to these so-called nuisance states, while

maintaining consistency.
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In this paper, we extend the robocentric visual-inertial Kalman filtering approach described

in [80] with the principles of relative navigation described in [90]. We also show that improving

the dynamic model can significantly improve estimation accuracy of VI estimation applied to a

multirotor and use the partial update formulation to deal with the additional nuisance state used in

modeling drag. The paper is organized as follows. In section 6.2, we describe several mathematical

concepts and notation used throughout the paper. In section 6.3, we briefly discuss the derivation

of our baseline filter [80] with the improved dynamic model. Sections 6.3.2 and 6.3.3 discuss the

measurement models used and sections 6.3.4 and 6.3.5 detail the keyframe reset and partial update

steps, respectively. Finally, section 6.4 details a Monte Carlo simulation experiment and compares

the performance of the proposed improvements in terms of accuracy and consistency.

6.2 Notation

The following definitions are used throughout the paper.

ei Unit vector with a one in the ith element
pI

b/I
Position of the body, with respect to the world frame, expressed in the world frame

vb
b/I

Velocity of the body frame, with respect to the world frame, expressed in the body

frame
qb

I
Quaternion describing rotation from the world frame to the body frame

βa Accelerometer bias
βω Rate gyro bias
b Linear drag coefficient

ζ c
i/c

Unit vector directed at the ith feature from the camera origin, expressed in the

camera frame
q
ζi
c Quaternion which describes the rotation from the camera e3 axis to the unit vector

ζ c
i/c

ρi Inverse distance to the ith feature

We will also make extensive use of the skew-symmetric matrix operator defined by

v∧ ,

[
0 −v3 v2
v3 0 −v1
−v2 v1 0

]
,
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that is related to the cross-product between two vectors with

v × w = v∧w.

To convert back to a vector from a skew-symmetric matrix, we use the ·∨ operator, so that

(
v∧

)∨
= v.

6.2.1 Quaternions

We will use Hamiltonian notation for unit quaternions ∈ S3

q = q0 + qxe1 + qye2 + qze3 =

[
q0

q̄

]
,

which defines the passive rotation matrix based on a unit quaternion as

R (q) =
(
2q2

0 − 1
)

I − 2q0q̄∧
+ 2q̄q̄⊤ ∈ SO(3).

This definition results in Rb
ara being interpreted as the original vector ra expressed in the new

coordinate frame b.

The exponential mapping for a unit quaternion is defined as

exp : so(3)∨ ∼ R3 → S3

exp (δ) ,


cos

(
‖δ‖
2

)
sin

(
‖δ‖
2

)
δ
‖δ‖


,
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with the corresponding logarithmic map defined as

log : S3 → so(3)∨ � R3

log (q) , 2 atan2 (‖q̄‖ , q0)
q̄

‖q̄‖
.

The notion of computing the difference between two group elements leads to defining uncer-

tainty over a member of the Lie manifold. For example, the attitude quaternion qb
I

has four elements

but only three degrees of freedom, so its covariance should be a 3×3 matrix. Using the logarithmic

map, we can define the attitude covariance as

E

[
log

((
q̂b

I

)−1

⊗ qb
I

)
log

((
q̂b

I

)−1

⊗ qb
I

)⊤]
∈ R3×3. (6.1)

Eq. (6.1) is significant because the covariance is parameterized in the Lie algebra so (3) (which is

a vector space) of SO (3) and therefore, can be used in a Kalman filtering framework.

6.2.2 ⊞ and ⊟ operators

Hertzberg et al. [91] describe a new syntax that simplifies working with Lie groups in a filtering

and optimization framework by introducing the ⊞ and ⊟ operators. This syntax allows us to work

with elements of Lie groups in a notation similar to that of vectors and will be used to describe

our filter derivation. The ⊞ and ⊟ operators are defined differently for different groups. For Rn,

they are simply defined as the typical addition and subtraction operations. For attitude quaternions

∈ S3, these operators are defined by

⊞ :S3 × R3 → S3

q ⊞ θ , q ⊗ exp (θ)

⊟ :S3 × S3 → R3
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q ⊟ p , log
(
p−1 ⊗ q

)
.

One common application of this syntax can be seen below in the discretized quaternion dynamics.

With θ = ωb
b/I

dt, we have

qb
I (t + dt) = qb

I (t) ⊞ θ

θ = qb
I (t + dt) ⊟ qb

I (t) .

While this syntax is convenient, it is important to note that the dimensionality of θ and qb
I

are

different in this case. The quaternion is not a vector and has four parameters, while θ has only three

parameters but exists in a vector space.

6.2.3 Feature Bearing Parameterization

As in [80], we parameterize the feature bearing states in the camera frame as rotations q
ζi
c ∈

S3
∼ R

ζi
c ∈ SO (3), which describe the rotation from the camera e3 axis to the unit vector directed

at the feature. The unit vector directed at feature i with respect to the camera frame c is then defined

by

ζ c
i/c
=

(
R
ζi
c

)⊤
e3 ∈ S2 ⊂ R3,

where we can see that this simply expresses the direction of the feature in the camera frame.

The difference between two unit vectors ζ i⊟ζ j can be described using axis-angle representation,

where the direction of the axis of rotation is orthogonal to both of the unit vectors, and its length is

scaled by the magnitude of rotation, as shown in Figure 6.2. There are actually only two degrees

of freedom in this parameterization because rotation about either feature vector does not change

unit vector direction. To remove the redundant degree of freedom, we note that the axis of shortest
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rotation is always in the plane normal to ζ c
i/c

and define a projection matrix

Tζi =
(
R
ζi
c

)⊤
[e1 e2] ∈ R

3×2,

which reduces the dimensionality of the axis-angle representation to this plane. It can be seen that

this projection matrix is just the two basis vectors orthogonal to feature direction, defined in the

camera reference frame.

We must then define the ⊞ and ⊟ operators associated with feature bearing vectors as

⊞ :SO (3) × R2 → SO (3)

q
ζ
c ⊞ δ , exp(Tζδ) ⊗ q

ζ
c

⊟ :SO (3) × SO (3) → R2

q
ζj
c ⊟ q

ζi
c , θT

⊤
ζi

s,

where the axis s and angle θ between the two feature direction vectors are given by

θ = cos−1
(
ζ⊤i ζ j

)
s =

ζ i × ζ j

‖ζ i × ζ j ‖
.

With only two degrees of freedom, and with all feature vectors referencing the camera e3 axis,

there are an infinite number of unit quaternions which can be used to represent the same unit vector.

The difference between these rotations is some angle of rotation about the bearing vector itself.

This is removed by the projection operation and can therefore be neglected. Reference [92] explores

more deeply the validity of the ⊞ and ⊟ operators under this assumption.
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Figure 6.2: Illustration of feature bearing vector geometry.

6.3 Derivation

In this section, we derive the relevant geometry and dynamics to fully describe and implement

the filter proposed in this paper.

6.3.1 State Definition and Kinematics

Let the state x ∈ R6 × S3 × R7 × S3 × R × · · · × S3 × R be defined by

x =
[
pI

b/I
vb

b/I
qb

I
βa βω b q

ζ1
c ρ1 · · · q

ζn
c ρn

]
,

with n tracked features. The corresponding covariance matrix P is then defined as

P = E
[
(x ⊟ x̂) (x ⊟ x̂)⊤

]
∈ R(16+3n)×(16+3n),
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where ⊟ for objects composed of multiple group elements implies the use of the appropriate ⊟

operator for each element.

Given measured acceleration āb
b/I

and measured angular velocity ω̄b
b/I

, the state has kinematics

Ûx = f (x, u + η) with the elements of f given by [50] and defined as

ÛpI
b/I =

(
Rb
I

)⊤
vb
b/I

Ûvb
b/I = e3e⊤3 ab

b/I + Rb
I gI − b

(
I − e3e⊤3

)
vb
b/I −

(
ωb

b/I

)∧
vb
b/I (6.2)

Ûqb
I = ωb

b/I

Ûβa = 0

Ûβω = 0

Ûb = 0

Ûq
ζi
c = −T⊤

ζi

(
ωc

c/I + ρi

(
ζ c
i/c

)∧
vc
c/I

)

Ûρi = ρ
2
i

(
ζ c
i/c

)⊤
vc
c/I,

where b is a linear drag term [50], u =
[
ab

b/I
ωb

b/I

]
is the input, η = [ηa ηω] is input noise, and

ab
b/I
= āb

b/I
− βa − ηa

ωb
b/I
= ω̄b

b/I
− βω − ηω.

Camera linear and angular velocities are also given by

vc
c/I
= Rc

b

(
vb

b/I
+

(
ωb

b/I

)∧
pb

c/b

)

ωc
c/I
= Rc

bω
b
b/I
,

where Rc
b

is the fixed rotation from body to camera frame and pb
c/b

is the fixed translation from

body to camera in the body frame.
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In the proposed filter, we employ the typical continuous-discrete Extended Kalman Filter

(EKF) equations. However, the use of ⊞ and ⊟ operators requires a slightly different treatment of

the propagation and update equations. We propagate the filter forward in time and apply discrete

updates according to

x̂ (t + dt) = x̂ (t) ⊞ f (x̂ (t) , u (t)) dt

x̂+ = x̂ ⊞ K (z ⊟ h (x̂)) ,

where K is the Kalman gain, z is a measurement, and h (x̂) is a measurement model.

6.3.2 Camera Measurement Model

Given a pixel measurement (u, v), pixel location of the camera’s optical axis (u0, v0), camera

focal lengths
(
fx, fy

)
, and relative landmark location in the camera frame, the pin-hole camera

model may be written in terms of x as

hcam (x) =
1

e⊤3 ζ
c

[
fx 0 0
0 fy 0

]
ζ c
+

[
u0
v0

]
. (6.3)

The Jacobian ∂hcam/∂x of the camera measurement model is given by

Hcam = [0 0 0 0 0 0 H1 0 · · · Hn 0] ,

where using the chain rule, we have

Hi =
1

e⊤3 ζ
c
i/c

[
fx 0 0
0 fy 0

] (
ζ c

i/c
e⊤3

e⊤3 ζ
c
i/c

− I3×3

) (
ζ c

i/c

)∧
Tζi .
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6.3.3 Accelerometer Measurement Model

Using the multirotor drag model from [50] in (6.2) provides the benefit that velocity becomes

directly observed by the accelerometer (assuming a linear drag constant). It is assumed that the

accelerometer measures total acceleration of the body, neglecting gravity, in addition to a constant

bias βa and zero-mean white noise ηa. If we also assume that thrust T acts only along the body e3

axis, we can consider just the body e1 and e2 axes, removing any dependence of the measurement

on T . The measurement model is then given by

hacc (x) = I2×3

(
−bvb

b/I
+ βa + ηa

)
. (6.4)

The Jacobian ∂hacc/∂x is given by

Hacc =

[
0 −bI2×3 0 I2×3 0 −I2×3vb

b/I
0 · · ·

]
.

6.3.4 Keyframe Reset

As shown in [51] and [90], performing a keyframe reset when global states are unobservable can

dramatically improve filter consistency and accuracy. A keyframe reset is performed by resetting

the global position and heading states to zero and updating the covariance matrix appropriately.

Each reset step results in a new node being declared in a pose graph structure, which can then

incorporate loop closures and other measurements as part of a global optimization routine. Figure

6.3 shows an illustration of the coordinate frames involved in the keyframe reset. Here, we note that

our setup slightly differs from [51] and [90] in that there is no altimeter measurement available, so

altitude is also unobservable, and we must also reset that state. Therefore, we can see in Figure 6.3

that node frames are co-located with keyframes, instead of on a ground plane.
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Figure 6.3: Keyframes ki are declared at periodic intervals along the trajectory flown by the MAV, while
node frames ni are associated with each keyframe and are gravity-aligned but co-located with each keyframe.
The current body frame b is estimated with respect to the most recent keyframe. New keyframes are declared
when less than 25 percent of the features present in the previous keyframe are still present. This promotes
observability of the transform between b and the most recent keyframe.

6.3.5 Partial Update

A common difficulty faced in visual-inertial navigation is the estimation of nuisance states

which may only be partially observable during many maneuvers. In the filter derived in this

paper, these states include the inverse depth to each feature ρi, accelerometer and gyro biases βa

and βω, and the linear drag term b. As noted in [89], estimating these terms in the traditional

manner can cause filter divergence but ignoring them or considering them as known constants

may produce an overconfident estimate. Because of the abundance of these states in our system,

we employ a version of the partial-update Schmidt-Kalman filter proposed by [89]. This method

allows the designer to tune the effect of a measurement update on the ith state with a scalar gain γi,

while correctly estimating uncertainty in these partially-updated states. While this method loses

optimality guarantees in estimating these states in a linear Kalman-filtering framework, it has been

shown to speed up convergence of these nuisance states by limiting the effect of linearization errors

when applied to the non-linear IMU-camera extrinsics estimation problem [89].

A drawback of the formulation given in [89] is the intermediate calculation of x̂+and P+. We

can manipulate these equations to remove this intermediate calculation and maintain algebraic
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equivalence. Let us first define λi = 1 − γi, and for N states, also define

λ = [λ1 λ2 · · · λN ] ,

which contains our tuning parameters. The values in this vector range from zero to one with ones

indicating a full update to those particular states. The state and covariance updates may now be

given by

x̂++ = x̂− ⊞ (λ ⊙ K (z ⊟ h (x̂−)))

P++ = P−
+ Λ ⊙

(
(I − KH) P− (I − KH)⊤ + KRK⊤ − P−) ,

where we’ve employed the numerically stable Joseph form of the covariance update, ⊙ is the

Hadamard product, and

1 = [1 1 · · · 1]⊤

Λ = 1λ⊤
+ λ1⊤ − λλ⊤.

6.4 Results

To identify improvements to consistency and accuracy, we employed a Monte Carlo (MC)

simulation of a MAV with a nonlinear aerodynamic model. The multirotor was commanded to

fly approximately five meters above a simulated ground plane at a constant forward velocity of

one meter per second. The commanded heading for each iteration evolved according to a random

walk. A fourth-order Runge Kutta integration scheme was used for the truth comparison. A sample

trajectory is shown in Figure 6.1.

Camera measurements consisted of static landmarks projected onto a simulated image plane

via the pin-hole camera model and were corrupted by a small amount of white noise. Landmarks
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were chosen by randomly selecting enough features in the camera’s field of view to fill the state

vector. These same features were then selected in subsequent time steps until they left the camera’s

field of view, at which point another landmark was randomly generated in the field of view. This

removes any dependence on a feature tracker in the MC simulation and results in ideal performance

because there are no data association errors. However, this approach is appropriate for filter

comparisons in an MC simulation because we wish to identify differences in filter performance

under ideal conditions. Accelerometer and gyro measurements were corrupted with Gauassian

noise and slowly varying biases similar to the observed noise in hardware experiments.

We implemented four different filters for comparison. The baseline (BL) filter is the same filter

derived in [80] except with the measurement model for features given as (6.3) rather than the patch-

based model in the original work. This was primarily done to simplify modeling in the simulation

environment and to guarantee that all filters received the same measurements. The second filter

modifies the baseline with a linear drag term (DT) as shown in (6.4), while the third filter modifies

the baseline with keyframe resets (KF) given in Section 6.3.4. The fourth filter augments the

baseline with a drag term, keyframe reset, and a partial update (KF+DT+PU). Each of these filters

were given identical inputs and measurements for each MC iteration, and the relevant process and

sensor noise covariance matrices used in each filter were derived from the corresponding simulation

parameters.

Inverse depth to each feature was initialized using the recommended values in [93] of ρ0 = 1/2dmin

and R0 = 1/16dmin with a minimum distance to each feature assumed to be dmin = 2 meters. To deal

with negative depth estimates, we used the method in [94], where any negative depth estimates

were immediately re-initialized to dmin and the covariance appropriately expanded to account for

the additional uncertainty. Because keyframes are not tied to a specific image in this estimator (as

opposed to the implementation in [90]) new keyframes were declared when more than one half of

the features present at the declaration of the previous keyframe were lost.
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Absolute accuracy of each filter was compared using the root mean squared error (RMSE) of the

position and attitude states. Because the filters with a keyframe reset step estimate this transform

with respect to a local keyframe, each time a new keyframe was declared, (or each time a new

node was created) both the true state xn and the estimated state x̂n of each filter were saved, even

in the filters with no keyframe reset step. We then calculated the RMSE of the estimated relative

transform (position and attitude) between the previously declared node frame and the current body

frame T b
n for each filter

JRMS =



T̂ b
n ⊟ T b

n




=






[
p̂n

b/n
− pn

b/n

q̂b
n ⊟ qb

n

]



 .

This method not only ensures that we perform a fair comparison between filters, but it also ensures

that the sometimes large heading errors accumulated before accelerometer and gyroscope bias

measurements converge do not confound RMSE calculations later on in the trajectory.

Filter consistency was analyzed using normalized estimator error squared (NEES) or the Ma-

halanobis distance of the position and attitude states. Because NEES is weighted by the current

covariance matrix of each estimator, the NEES of a filter with a keyframe reset is calculated with

respect to relative pose, while the NEES of a filter without a keyframe reset is calculated with

respect to global pose. Therefore, NEES is calculated according to

ǫ =




(
T̂ b

n ⊟ T b
n

)⊤
PTb

n

(
T̂ b

n ⊟ T b
n

)
if KF(

T̂ b
I
⊟ T b

I

)⊤
PTb

I

(
T̂ b

I
⊟ T b

I

)
otherwise



.

Because NEES is calculated over the transform states with 6-DOF (position and attitude), a his-

togram of the NEES of an ideal filter should fit a χ2 distribution with six degrees of freedom and

remain constant over time.
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We performed 2016 MC iterations of a five-minute simulation study and calculated the RMSE

and NEES at each time step (250 Hz). The average RMSE and NEES over time for each filter in

the MC simulation study are shown in Figure 6.6. In this plot, we see that the RMSE of each filter

decreases as each filter evolves in time and converges on the unknown biases. A histogram of the

RMSE and NEES for each estimator at the final time is given in Figure 6.7.

It is clear from the results of this study that using keyframe resets dramatically affects RMSE

and NEES, resulting more accurate and consistent pose estimates. In filters without a keyframe

reset step, the unobservable position and heading states cause the filter to become increasingly

inconsistent over time, resulting in large linearization errors and suboptimal sensor fusion [51].

It appears that while the drag term improves pose accuracy, it degrades consistency. This is not

altogether unexepected as the drag term is only partially observable and the resulting linearization

error on the drag term measurement update (6.4) causes the filter to become overconfident. The

improved accuracy, however comes from better state integration which arises from the improved

dynamic model.
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Figure 6.4: Drag term estimates of a single MC iteration with and without the partial update

The overconfidence caused by the drag term can be mitigated by using a partial update. In the

(KF+DT+PU) filter, γb was set to 0.02, which reduced the effect of linearization error on the state

and covariance. Figure 6.4, shows a single run of the drag term with and without the partial update.

In this plot, the drag term without the partial update produces oscillations corresponding to changes

in attitude. This is most certainly incorrect as we have no reason to believe that the constant drag
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Figure 6.5: Accelerometer biases of a single MC iteration with and without the partial update

term should be correlated with attitude. The partial update attenuates these oscillations and allows

us to benefit from the improved dynamic model. A similar effect is observed in accelerometer

and gyroscope bias estimates. We see in Figure 6.5, that without the drag term, acclerometer bias

estimates become strongly correlated with attitude. Again, the partial update damps this oscillatory

response and keeps the estimate more aligned with truth.

6.5 Conclusions

We have shown that augmenting visual-inertial extended Kalman filtering with keyframe resets,

an improved dynamic model, and partial updates greatly improves accuracy and consistency in VI

filtering. This is clearly demonstrated in Figures 6.6 and 6.7. The use of keyframe resets improves

filter consistency and accuracy without any observed negative consequences. Augmenting the

dynamic model with a linear drag term also improves accuracy but at the expense of degraded
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Figure 6.6: Average RMSE of the transform from the most recent keyframe (top) and average NEES (bottom)
for each filter over the entire simulation time over 2016 runs.

consistency. This inconsistency can be directly mitigated through the use of a partial update, thus,

providing better accuracy from the improved dynamic model, while maintaining filter consistency.

Finally, the combination of all three proposed improvements was shown to improve filter accuracy

and consistency over the baseline filter.
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Figure 6.7: The χ2 distribution with six degrees of freedom compared against each filter at the final
simulation time of 5 minutes using 2016 samples.
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CHAPTER 7: GV-INS: FUSING GNSS, VISUAL AND INERTIAL SENSORS IN A MOVING-

HORIZON ESTIMATION FRAMEWORK1

The autonomous operation of miniature aerial vehicles (MAVs) has in recent years been the

focus of many academic and commercial research efforts. This is largely due to recent advances in

computational power and sensing capabilities that have enabled the building of smaller and more

capable vehicles. Despite the large amount of effort put into improving the capabilities of MAVs,

they have yet to be fielded in large-scale industrial applications. There are several reasons for

this, but the biggest reasons center on operating autonomously under uncertainty. Localization,

mapping, understanding the environment and planning paths through the environment are still areas

of active of research seeking to mitigate these problems.

For ground vehicles, a common method to reduce uncertainty in autonomous operation is to use

high-fidelity sensors such as LIDAR and radar arrays. The weight and size of these sensors often

make them prohibitive for operation on a MAV as larger MAVs are more expensive, dangerous

and complicated. In lieu of LIDAR and radar arrays, one potential approach is to use lightweight,

less-powerful sensors in conjunction with more powerful algorithms to infer the structure of the

environment and current pose.

To keep cost and weight low, one potential sensor suite for MAVs is the combination of a

camera, inertial measurement unit (IMU), and global navigation satellite system (GNSS) receiver.

All of these sensors are lightweight, relatively inexpensive, and have complementary strengths

and weaknesses. GNSS receivers are only effective when in the line of sight of satellites, so they

are ineffective indoors, underground, or near buildings. However, they provide accurate global

information that does not drift. Inexpensive IMUs typically experience a large amount of drift and

1This paper will be submitted to The International Journal of Robotics Research

106



www.manaraa.com

noise, but their performance is not dependent upon the environment and they can be sampled at

high rates. Visual odometry (VO) calculated using cameras experiences drift, but the drift is slower

than IMUs. Most VO algorithms, however, require sufficient texture and structure in the field of

view (FOV) that is often present indoors and near buildings, but can be absent outdoors away from

buildings or at high altitudes. VO also typically relies heavily on matching visual features between

subsequent frames so significant changes in exposure during an indoor-to-outdoor transition can

cause a loss of feature tracks.

In practice, the level of integration between sensor modalities plays a large role in the synergy

between them. Deeper integration can dramatically increase the benefit of using multiple sensors

at the expense of significantly increasing the complexity of the fusion. In the more common

loosely coupled approach to GNSS/IMU sensor fusion, a GNSS receiver independently calculates

position and velocity from pseudorange and Doppler measurements and passes them to a sensor-

fusion algorithm. The fusion algorithm then combines these intermediate estimates with inertial

measurements that results in a smooth estimate (Figure 7.1). A tightly-coupled GNSS-inertial

(G-INS) framework fuses the pseudorange and Doppler measurements directly with the aid of

inertial measurements, without the intermediate position and velocity calculation (Figure 7.2). The

tightly-coupled approach results in better accuracy [95], but is more complicated to implement.

Visual odometry algorithms have an analogous relationship, where a loosely-coupled system

calculates odometry between image frames independent of inertial information (Figure 7.3) and

a tightly-coupled visual-inertial (V-INS) framework uses inertial information to aid the visual

odometry (Figure 7.4). Most G-INS algorithms have been demonstrated effectively at high altitudes

or in open spaces, where V-INS algorithms can struggle. However, V-INS algorithms have been

primarily demonstrated indoors or close to buildings where G-INS is degraded or not possible. A

common trouble spot is the GNSS-degraded zone, where GNSS signals are blocked by or bounce

off structures and give erroneous readings, but where sufficient texture may also be unavailable for

robust V-INS operation, or significant changes in lighting levels induce lost feature measurements.
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In this work, we fuse information from all three of these sensing modalities (IMU, GNSS and

vision) in a tightly-coupled GV-INS framework. We explore the details of this fusion through

simulation studies and finally demonstrate it in a hardware experiment of a transition from an

open-sky environment to an indoor environment and back through the GNSS-degraded zone in the

shadow of a large building. Through these experiments, we demonstrate that the tight coupling

between the three modalities allows the MAV to leverage the strengths of all three in a constructive

way and overcome their respective shortcomings.

7.1 Background

7.1.1 G-INS History

Some of the first autonomous operations of MAVs used a loosely coupled G-INS estimation

approach. These approaches used the position and velocity calculated by a GNSS receiver and

fused this measurement with an IMU using an extended Kalman filter [96–101] or nonlinear

observer [102]. These methods showed early that MAVs were capable of target tracking, path

following, and various other useful tasks, however, they were limited by their reliance on GNSS,

leading to brittleness in urban environments.

Development of tightly coupled G-INS solutions for MAVs has been a more recent advance-

ment [103], but was demonstrated on larger ground vehicles earlier [95,104–106]. Tightly coupled

approaches have shown to be superior to loosely coupled architectures in terms of accuracy, time

to acquisition, and the ability to deal with degraded GNSS in urban environments [107]. This is

largely due to the fact that a tightly coupled estimation architecture is able to provide information

even if only a single satellite is observed, and satellite positions can be estimated even in the absence

of any measurements between observations [95].

One of the primary reasons for fusing raw GNSS measurements with inertial measurements is

that it facilitates the identification and rejection of multipath measurements. Multipath in GNSS
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Figure 7.1: Block diagram for a loosely coupled GNSS-INS estimation scheme. In this configuration,
the GNSS receiver is responsible for calculating an intermediate velocity and position estimate from the
satellite pseudorange and doppler measurements. This intermediate measurement is then fused with inertial
measurements in a state estimator.

signals appears as a step change in estimated position, and proper fusion of inertial information

makes these outliers much less probable and easier to identify. Another multipath mitigation

technique relies on performing inference over several measurements. This was shown by Sünderhauf

et al. [108], who demonstrated a novel switching parameter for incorporating raw pseudorange

measurements in a factor graph. This work was further explored in [109] and compared with

various other robust optimization techniques. However, neither of these works were inertially-

aided, nor did they run in real-time onboard an autonomous agent. We similarly utilize the

switching parameter architecture, but in conjunction with our inertial measurements in a sliding-

window fashion to enable us to identify and reject multipath measurements in real-time operations

onboard a MAV.

7.1.2 V-INS History

Performing robust visual-inertial estimation has been the focus of considerable effort in recent

literature. There have been a variety of architectures proposed including loosely coupled filtering

VO approaches (as shown in Figure 7.3) such as [51, 90, 110–115], tightly coupled filter-based
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Figure 7.2: Block diagram for a tightly coupled GNSS-INS estimation scheme. In this configuration, the
state estimator is given pseudorange and doppler measurements that are fused directly with inertial data.
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Figure 7.3: Block diagram for a loosely coupled V-INS estimation scheme. In this configuration, the image
data is processed by a visual odometry algorithm that calculates an intermediate relative change in position
and attitude from image frame to image frame. This intermediate measurement is then fused with inertial
measurements in a state estimator.
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Figure 7.4: Block diagram for a tightly coupled V-INS estimation scheme. In this configuration, the pixel
locations of tracked features are given to the estimator directly, and are fused with directly with inertial data.
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approaches (shown in Figure 7.4) [81, 82, 84, 92] and moving-horizon-based approaches [82, 86,

116–118].

Tightly coupled, moving horizon estimation (MHE) approaches have shown considerable ad-

vantages in terms of accuracy and robustness when compared to loosely coupled architectures and

MHE has been shown to be superior to filtering, but is more computationally complex. While filter-

ing approaches have the advantage of being computationally efficient, they can struggle in certain

situations to overcome significant nonlinearities and weakly observable states [51, 119]. On the

other hand, effort has been put into reducing the computational load required for MHE approaches,

such as IMU preintegration [117], incremental smoothing [120, 121] and graph reduction [122].

Recent work comparing MHE approaches with filtering approaches have shown that, per unit of

computational effort, MHE approaches have a greater return in terms of accuracy than filtering

approaches [123]. Furthermore, modern computational capabilities have arrived to the point that

even inexpensive MAVs are capable of performing MHE with onboard computation [124]. Be-

cause of these advancements we have chosen to adopt an MHE approach in our tightly coupled

GV-INS framework, described in Figure 7.5. Our work is most like [86] in that we use a similar

IMU preintegration mechanism and projection factor, however, we have extended the visual-inertial

approach described to allow for raw pseudorange measurements and made several other necessary

adjustments ensure real-time operations as described later.

The recent work in visual-inertial estimation theory has largely left the line of research in GNSS

integration alone. There have been a few loosely coupled GV-INS architectures demonstrated [51,

125, 126], a few hybrid systems with tightly coupled vision but loosely coupled GNSS [127, 128],

and also tightly coupled GNSS but loosely coupled vision [106]. However, to our knowledge there

has not been a fusion of the new ideas from the state-of-the-art visual-inertial research to the more

established tightly coupled GNSS integration. We believe that the fusion of these ideas results in an

estimation scheme that can effectively operate in the transition area between between GNSS-denied

operation and reliable GNSS operation.
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Figure 7.5: Block diagram for proposed tightly coupled GVINS architecture. The estimator is responsible
for fusing raw pseudorange measurements as well as the pixel location for tracked features with IMU
measurements.

In the following sections we first derive the MHE problem, and then the relevant factors used

in our MHE: the IMU preintegration factor, the pseudorange factor, and the feature projection

factor. Second, we describe the set up of our MHE and the management of the relevant estimated

parameters. We then show the results of some simulation studies and finally the results of a

hardware experiment.

7.2 Notation

The following notation is used throughout the rest of the paper. First, we make use of the

following coordinate frames:

I Inertial coordinate frame (origin of trajectory)

E Earth-centered, earth-fixed coordinate frame as described by WGS84

b body frame (assume centered at IMU location)

c camera frame

g GNSS antenna coordinate frame.

We also use the following variable naming conventions:
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ei unit vector in the ith direction

p position

v velocity

q unit quaternion rotation

g gravity

R rotation matrix

βa accelerometer bias

βω rate gyro bias

τ clock bias

ζ i unit vector directed at the ith feature from the camera origin

ρi inverse distance to the ith feature

σi pseudorange to ith satellite

κi psuedorange switching variable for ith satellite

νi x-y pixel measurement of the ith feature,

â estimated quantity a

ā measured quantity a

ã error in quantity a

and describe the expression of quantities in terms of their coordinate frames as follows:

vc
a/b

velocity of coordinate frame a with respect to frame b, expressed in frame c

qb
a quaternion rotation from frame a to frame b.

We also make extensive use of the skew-symmetric matrix operator that is related to the cross-

product between two vectors as

v × w = ⌊v⌋× w.
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7.2.1 Quaternions

We use Hamiltonian notation for unit quaternions ∈ S3

q = q0 + qxe1 + qye2 + qze3 =


q0

®q


,

which defines the passive rotation matrix based on a unit quaternion as

R (q) =
(
2q2

0 − 1
)

I − 2q0
⌊
®q
⌋
×
+ 2®q®q⊤ ∈ SO(3). (7.1)

This definition results in Rb
ara
= rb being interpreted as the original vector ra expressed in the new

coordinate frame b.

We define the exponential mapping for a unit quaternion as

expq : R3 → S3

expq (θ) ,


cos

(
‖θ‖
2

)
sin

(
‖θ‖
2

)
θ
‖θ‖


,

and define the corresponding logarithmic map as

logq : S3 → R3

logq (q) , 2 atan2
(

®q

 , q0

) ®q

®q

 .

7.2.2 Rigid Transforms

We define a rigid transform ∈ SE (3) as the tuple of a translation vector and rotation quaternion

T b
a =

(
pa

b/a
, qb

a

)
for efficient implementation. If T b

a =

(
pa

b/a
, qb

a

)
and T c

b
=

(
pb

c/b
, qc

b

)
then rigid
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transform multiplication is defined by

T c
a = T b

a ◦ T c
b

,

(
pa

b/a
+ R

(
qb

a

)−1
pb

c/b
, qb

a ⊗ qc
b

)

=

(
pa

c/a
, qc

a

)
,

with the inverse given by (
T b

a

)−1
=

(
−R

(
qb

a

)
pa

b/a
,
(
qb

a

)−1
)
,

such that

T b
a ◦

(
T b

a

)−1
=

(
T b

a

)−1
◦ T b

a =
©­«
0,


1

0


ª®¬
.

Given linear and angular changes
(
δ ∈ R3, θ ∈ R3

)
∼ R6, the exponential mapping for a rigid

transform is given by

expT : R6 → SE (3)

expT (δ, θ) ,
(
Vδ, expq θ

)
,

where

V = I +
1 − cos ‖θ‖

‖θ ‖2
⌊θ⌋× +

‖θ‖ − sin ‖θ‖

‖θ‖3
⌊θ⌋× ⌊θ⌋× .

The corresponding logarithmic map is defined by

logT : SE (3) → R6

logT (T) ,
(
V−1p, logq (q)

)
,
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where

V−1
= I −

1

2
⌊θ⌋× +

1

‖θ ‖2

(
1 −

‖θ‖ sin ‖θ‖

2 (1 − cos ‖θ‖)

)
⌊θ⌋× ⌊θ⌋× .

7.3 Moving Horizon Estimation

The objective of the moving horizon estimation (MHE) problem is to find the maximum-

likelihood estimate of some recent window of states given sensor measurements that occurred in

this window. This problem is written as

x⋆ = arg max
x

P (x|z) , (7.2)

where x are all the states in the sliding window and z are all the measurements that occurred in

this window. If we assume that measurements are independent, then we can factor Eq. 7.2 into a

product of the probability of each measurement

x⋆ = arg max
x

n∏
i

P (x|zi) . (7.3)

Next, if we assume that we have some measurement model function zi = hi (x) + ηi where

ηi ∼ N (0, Σi), then

P (x|zi) ∝ exp

(
−

1

2
rT

i Σ
−1
i ri

)
,

where the measurement residual ri = zi − hi (x).

Although our objective is to solve the maximum likelihood problem, computing Eq. 7.3 directly

is likely to run into numerical precision issues. Therefore, we transform Eq. 7.3 with the negative

logarithm and search for the global minima of the result.
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x⋆ = arg min
x

(
− log

(∏
n

exp

(
−

1

2
rT

i Σ
−1
i ri

)))

x⋆ = arg min
x

∑
n

1

2
rT

i Σ
−1
i ri (7.4)

Eq. 7.4 is the well-known nonlinear least-squares optimization problem. There are a wide variety

of high-performance solvers that can be used to solve this problem [8, 85, 121, 129, 130], most of

which rely on some Newton-based method. In our implementation, we utilize the ceres solver [129]

that has been optimized for this type of problem.

The factoring of the problem in Eq. 7.3 when applied to the equivalent Bayesian network gives

rise to the concept of a factor graph, where the factors are literally the factors of the product in

Eq. 7.3, or the measurement models. The factor graph of the GPS-inertial MHE problem with

preintegrated IMU is illustrated in Figure 7.6 as an example.

To fully describe our approach, we now need to define the relevant factors for our problem

that are expressed in Eq. 7.3. These are derived in the next three sections. We first derive the

preintegrated IMU factor (Section 7.4), then the projection factor used for fusing visual information

(Section 7.5), and finally the pseudorange factor (Section 7.6).

7.4 IMU Preintegration

The first and most complicated factor relates two subsequent states using IMU measurements.

A challenge when fusing IMU measurements is the high rate that measurements occur, and the

associated computational complexity that arises from having a large number of parameters to

optimize. Therefore, to reduce the computational burden associated with inference we can combine

a bunch of IMU measurements into a single factor so we do not end up having an unreasonable

number of nodes to optimize over. In the factor graph literature, this process is known as IMU
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Figure 7.6: An example factor graph of a sliding window with preintegrated IMU. Filled circles represent
measurement values, while unfilled circles represent estimated values. Squares represent the independent
components of Eq. 7.3 and are known as factors. These nodes encode the relationship between the variables
in the graph.

preintegration, as popularized for use in Visual-Inertial factor graphs by [116]. However, it very

similar to well-established strapdown inertial navigation IMU integration techniques that use coning

or sculling compensation [131] to reduce the computational burden of fusing high-rate IMU on

constrained platforms.

Our formulation integrates the raw IMU measurements on the rotation manifold, like [86,116],

but uses the concept of the error-state to derive the covariance in a straight-forward manner.
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To derive the method of IMU preintegration, let us first consider the change in state between

two subsequent poses i and j given by



pI
j/I

v
j

j/I

q
j

I


=



pI
i/I
+

∬ tj

ti

(
RI
τa

τ
τ/I
+ gI

)
dτ dτ

R
j

i

(
vi

i/I
+

∫ tj

ti

(
Ri
τa

τ
τ/I
+ Ri

I
gI

)
dτ

)
qi

I
⊗ expq

(∫ tj

ti
ωτ
τ/I

dτ
)


. (7.5)

We would like to separate the part of this integration that is dependent on the state at node i from

the rest of the integration. We call the remainder of the integration yi
j/i

, which is the component

dependent only on the IMU measurements. Isolating this part of the interval allows us to change

the pose of node i without being required to re-compute our preintegrated measurement. We can

separate the the dependent part of the transition by first pulling the constant quantities out of the

integrals. If δt = t j − ti, then Eq. 7.5 can be written as



pI
j/I

v
j

j/I

q
j

I


=



pI
i/I
+

1
2gIδt2

+ vI
i/I
δt +

∬ tj

ti
RI
τa

τ
τ/I

dτ dτ

R
j

i

(
vi

i/I
+ Ri

I
gIδt +

∫ tj

ti
Ri
τa

τ
τ/I

dτ
)

qi
I
⊗ expq

(∫ tj

ti
ωτ
τ/I

dτ
)


.

We then can define the IMU-dependent part of the transition as

yi
j/i
=



αi
j/i

βi
j/i

γ
j

i


=



∬ tj

ti
RI
τa

τ
τ/I

dτ dτ∫ tj

ti
Ri
τa

τ
τ/I

dτ

expq

(∫ tj

ti
ωτ
τ/I

dτ
)

,

which is our preintegrated IMU measurement.
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Given this definition, can write the continuous-time dynamics of yi
j/i

over the interval as

Ûyi
j/i
=



Ûαi
b/i

Ûβ
i

b/i

Ûγb
i


=



βi
b/i

Ri
b
ab

b/i

1
2
©­«
γb

i
⊗


0

ωb
b/i


ª®¬


,

and because we assume that we have an IMU measurement
[
ā ω̄

]T

with constant bias
[
ba bω

]T

and noise
[
ηa, ηω

]T

, the dynamics of yi
j/i

over the interval are given as

Ûyi
j/i
=



Ûαi
b/i

Ûβ
i

b/i

Ûγb
i


=



βi
b/i

Ri
b

(
ā − ba + ηa

)
1
2

©­«
γb

i
⊗


0

ω̄ − bω + ηω


ª®¬


.

7.4.1 Covariance Propagation

Given yi
j/i

and the estimates of nodes i and j we now have the information required to calculate

the residual rIMU for Eq. 7.4, however, we also need the covariance of this residual before we can

properly weight it in the optimization. To derive the covariance of the preintegrated measurement

we will utilize what is known as the error state dynamics of y. The covariance of the preintegrated

IMU measurement is given as

Σy = E
[
ỹỹT

]
.

If the preintegrated measurement were a vector like other residuals, then we would expect the ỹ to

be computed using vector subtraction as

ỹ = y − ŷ.
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However, because the rotation component of y is a quaternion, we must use a more generalized

notion of differencing, where we use the quaternion logarithm to map the difference between two

rotations into a vector space. This results in ỹ being defined as follows:

ỹ =



α̃i

j/ ĵ

β̃
i

j/ ĵ

γ̃
j

ĵ


=



αi
j/i

− α̂i

ĵ/i

βi
j/i

− β̂
i

ĵ/i

logq

((
γ̂

ĵ

i

)−1
⊗ γ

j

i

)

. (7.6)

We can use the dynamics of ỹ to propagate the covariance over the interval. Unfortunately, the

dynamics of ỹ are not trivial, but we will derive them in the following paragraphs.

Before we can derive the dynamics of the error state of y, however, we must consider the

error-state inputs to our system. Like the error state, the error state inputs are defined as

ũ = u − û.

In our case, we have accelerometer and rate gyroscope measurements that are the inputs to our

IMU preintegration system. We also have a current estimate of the constant bias for both of these

sensors b̂a and b̂ω.

Let us first consider the angular velocity input. The true angular velocity is assumed to take the

form of

ω = ω̄ − bω + ηω,

where ηω is some Gaussian process and bω is the true gyroscope bias. Our estimated angular

velocity input is also defined as

ω̂ = ω̄ − b̂ω,
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which means that the error-state input is given as

ω̃ = ω − ω̂

= ω̄ − bω + ηω −
(
ω̄ − b̂ω

)
= −b̃ω + ηω.

The accelerometer error-state model is derived in a similar way, and is given as

a = ā − ba + ηa

â = ā − b̂a,

ã = −b̃a + ηa.

Now we can look at the error state of the preintegrated measurement. First let us consider α̃.

This term turns out to be pretty simple, because βi
j/i

is already expressed in the origin frame of the

preintegration interval i. Therefore,the dynamics of α̃ are given as

Û̃αi

j/ ĵ
= βi

j/i
− β̂

i

ĵ/i

= β̃
i

j/ ĵ . (7.7)

The velocity-like term β, however, requires us to rotate our IMU measurements into the origin

frame i. If we use the identity R
(
expq (θ)

)
≈ I − ⌊θ⌋× (Eq. 7.1) and drop all terms where

error-quantities are multiplied together, then we can derive the dynamics of β̃ as follows:

Û̃βi

j/ ĵ
= Ûβ

i

j/i −
Û̂βi

ĵ/i

=

(
R

j

i

)⊤ (
a

j

j/i

)
−

(
R

ĵ

i

)⊤ (
â

ĵ

ĵ/i

)
=

(
R̂

ĵ

i

)⊤ (
R̃

ĵ

j

)⊤ (
â

ĵ

ĵ/i
+ ã

ĵ

ĵ/b

)
−

(
R

ĵ

i

)⊤ (
â

ĵ

ĵ/i

)
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=

(
R̂

ĵ

i

)⊤
R

(
expq

(
γ̃

ĵ

j

))⊤ (
â

ĵ

ĵ/i
+ ã

ĵ

j/ ĵ

)
−

(
R

ĵ

i

)⊤ (
â

ĵ

ĵ/i

)
≈

(
R̂

ĵ

i

)⊤ (
I −

⌊
γ̃

ĵ

j

⌋
×

)⊤ (
â

ĵ

ĵ/i
+ ã

ĵ

j/ ĵ

)
−

(
R

ĵ

i

)⊤ (
â

ĵ

ĵ/i

)
=

(
R̂

ĵ

i

)⊤ (
â

ĵ

ĵ/i
+ ã

ĵ

j/ ĵ

)
+

(
R̂

ĵ

i

)⊤ ⌊
γ̃

ĵ

j

⌋
×

(
â

ĵ

ĵ/i
+ ã

ĵ

j/ ĵ

)
−

(
R

ĵ

i

)⊤ (
â

ĵ

ĵ/i

)
=

(
R̂

ĵ

i

)⊤ (
ã

ĵ

j/ ĵ

)
+

(
R̂

ĵ

i

)⊤ ⌊
γ̃

ĵ

j

⌋
×

(
â

ĵ

ĵ/i
+ ã

ĵ

j/ ĵ

)
≈

(
R̂

ĵ

i

)⊤ (
ã

ĵ

j/ ĵ

)
+

(
R̂

ĵ

i

)⊤ ⌊
γ̃

ĵ

j

⌋
×

â
ĵ

ĵ/i

=

(
R̂

ĵ

i

)⊤ (
−b̃a + ηa

)
+

(
R̂

ĵ

i

)⊤ ⌊
γ̃

j

ĵ

⌋
×

(
ā − b̂a

)
= −R

(
γ

ĵ

i

)⊤ ( ⌊
ā − b̂a

⌋
×
γ̃

ĵ

j
− b̃a + ηa

)
. (7.8)

This derivation assumes that error-state quantities are small, which is a reasonable assumptions, as

we will only be using the Jacobian of these dynamics to propagate our covariance.

Finally, the derivative of our attitude portion γ̃ is derived using the same approximations as

Û̃γ
ĵ

j
= R

(
expq

(
γ̃

ĵ

j

))
ω

j

j/i
− ω̂

ĵ

ĵ/i

≈
(
I −

⌊
γ̃

ĵ

j

⌋
×

)⊤ (
ω̂

ĵ

ĵ/i
+ ω̃

ĵ

j/ ĵ

)
− ω̂

ĵ

ĵ/i

=

(
ω̂

ĵ

ĵ/i
+ ω̃

ĵ

j/ ĵ

)
−

⌊
γ̃

ĵ

j

⌋⊤
×

(
ω̂

ĵ

ĵ/i
+ ω̃

ĵ

j/ ĵ

)
− ω̂

ĵ

ĵ/i

= ω̃
ĵ

j/ ĵ
−

⌊
γ̃

ĵ

j

⌋⊤
×

(
ω̂

ĵ

ĵ/i
+ ω̃

ĵ

j/ ĵ

)
≈ ω̃

ĵ

j/ ĵ
−

⌊
γ̃

ĵ

j

⌋⊤
×
ω̂

ĵ

ĵ/i

=

(
−b̃ω + ηω

)
+

⌊
γ̃

j

ĵ

⌋
×

(
ω̄ − b̂ω

)
= −

⌊
ω̄ − b̂ω

⌋
×

(
γ̃

j

ĵ

)
− b̃ω + ηω. (7.9)
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We can now linearize Eqs. 7.7, 7.8 and 7.9 to get our continuous-time state-space Jacobians

A =



0 I 0

0 0 −R
(
γb

i

)⊤
⌊ā − ba⌋×

0 0 − ⌊ω̄ − bω⌋×


B =



0 0

−R
(
γb

i

)⊤
0

0 I


such that

Û̃y ≈ A (y, u) ỹ + B (y) η. (7.10)

We wish to integrate Σy according to our discrete sample time δt. Therefore we discretize

Eq. 7.10 with

y [t + δt] = Āy [t] + B̄z [t] ,

where 
Ā B̄

0 I


= exp

©­«

A B

0 0


δt

ª®¬
. (7.11)

Eq. 7.11 can be approximated as

Ā = I + Aδt +
A2

2
δt2

B̄ =

(
I +

1

2
Aδt

)
Bδt

without significant loss of precision given small δt. Now, with these discrete Jacobians, we can

propagate our covariance

Σy [t + δt] = ĀΣy [t] Ā⊤
+ B̄ΣuB̄⊤ (7.12)

with Σy [0] = 0.
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7.4.2 IMU Bias Adjustment

The reason we derived y in the manner we did was to eliminate dependence of y on the

pose of node i. Otherwise, we have to recompute y every time we change i during optimization.

Unfortunately, there is no known way to eliminate our dependence on our initial estimate of the

IMU bias, b. However, if we assume that our initial estimate of b is close to its actual value, then

we can use a linear approximation of how y changes with respect to changes in b and compensate

for the deviation in real-time.

Let us assume that the integration of y0 occurred with b = b0, but during optimization, we want

to find the value of y′ given b′
= b0 + δb. The linear approximation is then

y′ = y0 +
∂y

∂b
δb.

We can compute ∂y

∂b
along with the covariance as we get new IMU measurements. If we let

J =
∂y

∂b
, and J [0] = 0, then J propagates according to

J [t + δt] = ĀJ [t] + C̄δt.

where C is the Jacobian of our dynamics with respect to the bias. Conveniently, it is pretty easy to

see through inspection of Eqs. 7.7, 7.8 and 7.9 that C̄ = −B̄.

7.4.3 IMU Residual Calculation

Finally, now that we have computed our preintegrated measurement yi
j/i

, compensated for any

change in IMU bias, and calculated the covariance Σy we can calculate the residual to use in Eq. 7.4.
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The measurement model for y given the estimated pose and velocity for nodes i and j is given as

ŷi
j/i
=



α̂i
j/i

α̂i
j/i

γ̂
j

i


=



(
R̂i

I

) (
p̂I

j/I
− p̂I

i/I
− 1

2gIδt2
)
− v̂i

i/I
δt(

R̂
j

i

)T

v
j

j/I
− R̂i

I
gIδt((

q̂i
I

)−1
⊗ q̂

j

I

)

.

We compute the difference our measured and estimated quantities of y using the same generalized

difference procedure used in our error-state derivation Eq. 7.6 to map the rotation error into a vector

space as follows:

rIMU =



ᾱi
j/i

− α̂i
j/i

β̄
i
j/i − β̂

i

j/i

logq

((
γ̄

j

i

)−1

⊗ γ̂
j

i

)

.

This residual is then weighted by the covariance we compute recursively with Eq. 7.12.

7.5 Computer Vision

The next factor we need to derive for our MHE problem (Eq. 7.4) is used for fusing visual

information. At a high level, we assume that we can observe the same landmark several times over

subsequent image frames. We use the pixel measurements to these landmarks to both infer the

inverse depth to the landmark in the first frame that it is observed, and the translation and rotation

between subsequent frames. In this section, we will first describe the image processing involved in

generating landmark measurements and then derive the projection factor used in our MHE problem.

7.5.1 Image Processing

We use a global-shutter camera rigidly attached to the MAV with hardware synchronization

between the IMU and camera shutter. We assume pinhole camera geometry, and that observed

landmarks are stationary.
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Features are extracted using a Shi-Thomasi corner detector [132], and are tracked from frame

to frame with Lucas-Kanade pyramidal optical flow [133]. Tracked features are then filtered with

two methods. The first checks how close features are to one another. If two features are found to be

too close, one of them is dropped so we can acquire a new feature in a different part of the image.

Next, the relative pose between the most recent keyframe and the current image is found up to a

scale factor using the five-point RANSAC algorithm [134]. If a tracked feature is not found to be

an inlier of the RANSAC pose solution, then it is also removed.

7.5.2 Keyframe Declaration

Like [86], we use the notion of keyframes, where features are compared to a keyframe image,

and new keyframes are periodically declared based on specific criteria. New keyframes are selected

under three conditions. First, the first image provided to the system is declared the first keyframe.

Second, new keyframes are selected when the average parallax of tracked features exceeds some

threshold after compensating for rotation. The average derotated parallax between frames i and j

of N pixel measurements is given by

1

N

N∑
n=1




π (
Ri

jπ
−1

(
ν

j
n

)
− νi

n

)



2
,

where π is the camera projection function which maps pixel measurements νi into the associated

unit vector ζ c
i/c

as in

π
(
νi

)
= ζ c

i/c
,

and Ri
j
is the rotation between frames. Third, we also select keyframes when the number of tracked

pixels between keyframes drops below a specified value.
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Figure 7.7: Projection factor geometry

7.5.3 Projection Factor Derivation

The measurement model for the second observation of a landmark ℓ at some coordinate frame

j after the first observation in frame i is given as

ζ̂
cj

ℓ/cj
= R

cj

I

(
pI
ℓ/I

− pI
cj/I

)
= R

cj

j
R

j

I

[
pI

i/I
+ pI

ℓ/i
−

(
RI

j p
j

cj/ j
+ pI

j/I

)]
= R

cj

j
R

j

I

[
pI

i/I
+ RI

i

(
Ri

ci

1

ρ
ζ

ci
ℓ/ci
+ pi

ci/i

)
− pI

j/I

]
− p

j

cj/ j
.

We project the residual for this measurement onto the plane normal to ζ̄
ci
ℓ/ci

and get

rζ = Pζ̄

(
ζ̄

j

ℓ/ j
− ζ̂

j

ℓ/ j

)
, (7.13)
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where

Pζ =

[
ζ × e3

‖ζ × e3‖

⊤ ζ × ζ × e3

‖ζ × ζ × e3‖

⊤
]⊤
.

The Jacobians for the projection factor are derived in Appendix 7.10.2.

The covariance of our feature bearing measurement Σζ is computed based on the physical

capabilities of the camera and the operating environment. With the residual and covariance, we

can now fully compute the projection factor to put into Eq. 7.4 as

fζ =
1

2
rζΣ

−1
ζ rT

ζ .

7.6 GNSS Measurement Processing

The last factors we need to derive are used for fusing GNSS measurements. We assume that

we receive pseudorange and pseudorange rate measurements from satellites with known positions.

This information allows us to infer our global pose and velocity, and given our other relative

measurements (IMU and vision), the global pose of the origin frame. In this section, we first

give a brief overview of GNSS signal processing. We then derive the relevant factors used in

our implementation, both with and without a switching factor used to mitigate multipath effects.

Finally, we describe some important details for successfully fusing global GNSS information with

the relative information supplied by IMU and vision.

7.6.1 Pseudorange Measurement

The pseudorange measurement to a satellite s is given by the following model:

σ =


σ̂s

Û̂σs


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=






pE
s/E

− pE
g/E




 + 1
c
ω⊤

E

⌊
pE

s/E

⌋
×

pE
g/E
+ δatm

+ c (τb − τs)


 ÛpE
s/E

− ÛpE
g/E




 + 1
c
ω⊤

E

⌊
pE

s/E

⌋
×
ÛpE
g/E
+

1
c
ω⊤

E

⌊
ÛpE

s/E

⌋
×

pE
g/E
+ c ( Ûτb − Ûτs)


, (7.14)

where δatm is modeled by the sum of the Klobuchar [135] and Saastamoinen [136] atmospheric

models, ωE is the rotation of the earth, c is the speed of light, and τb, τs are the clock bias of

the receiver and satellite, respectively. Therefore, the naive pseudorange residual (without the

switching factor) is given by

rσs
= σ̄s − σ̂s, (7.15)

and is weighted in Eq. 7.4 by the measurement covariance Σσ.

In implementation, if we assume that the receiver contains a decent estimate of the current time

(i.e., the initial clock bias is low), then we can assume that a linear approximation of the effects

of the atmospheric error, Sagnac compensation, rotation of the earth, and the satellite velocity and

position are sufficient for the residual calculation.

7.6.2 Clock Bias Dynamics

In Eq. 7.14, we see a strong dependence upon accurate estimates of the receiver clock bias τb and

its derivative Ûτb. The satellite clock bias and clock bias rate are given by the broadcast ephemeris,

but the stability of a consumer-grade GNSS receiver cannot be guaranteed to nanosecond precision,

and instead must be estimated. We therefore estimate the clock bias for each state in our moving

horizon and use the following state transition error function from time t to t + δt:

rτ =


τb[t] + δt Ûτb[t]

Ûτb[t]


−


τb [t + δt]

Ûτb [t + δt]


. (7.16)

This residual is then weighted by Στ, which is chosen based on the characteristics of the GNSS

receiver, and is used in Eq. 7.4.
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7.6.3 Switching Pseudorange Measurement Residual

As shown in [108], use of the naive pseudorange residual (Eq. 7.15) can introduce large

estimation errors in the presence of multipath signals. This is because the distribution of multipath

signals is very poorly approximated by the normal distribution assumed in the derivation of our

MHE problem (Eq. 7.3). Therefore, because we intend to operate in a multipath environment, we

utilize the switching pseudorange factor described in [108]. This is done by adding a parameter

κ ∈ [0, 1] that the optimizer can use to opportunistically remove pseudorange residuals from the

optimization. To avoid the case that the optimizer simply removes all pseudorange measurements,

we also augment the residual with a penalty for removing the pseudorange from the optimization.

This logic is codified in the following expression for the switching pseudorange residual as

r′σs
=


κs (σs − σ̄s)

1 − κs


. (7.17)

The covariance used to weight Eq. 7.17 is given by

Σ
′
σ =


Σσ 0

0 Σκ


,

where Σκ, is chosen by manual tuning. In our implementation, the bounds on κs are enforced

by the optimization algorithm and the same clock bias dynamic constraint (Eq. 7.16) is applied

when using either the naive form or switching form of the pseudorange residual. For reference, the

Jacobians of Eq. 7.17 are derived in Appendix 7.10.1

Like [108], we also assume that if a previous measurement was invalid, then there is a high

likelihood that the next measurement will also be invalid. To avoid our optimization switching

too often, we apply the following dynamic constraints to the switching factors applied to the same
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satellite:

rκ = κs [t + δt] − κs [t] .

This residual is weighted by Σ Ûκ, which is also chosen by manual tuning. Although the switch-

ing factor introduces new parameters in the optimization and therefore increases the solution

time, it has been shown to significantly stabilize the optimization and yield smooth results (see

Sec. 7.8.1,7.8.2, [108, 109]) and is therefore worth the extra computational cost when operating in

multipath environments.

7.6.4 Global and Relative Information Fusion

When simultaneously fusing GNSS with inertial and visual measurements, we must carefully

consider how to deal with the difference between global and relative information. Because satellite

positions (and therefore pseudorange measurements) are defined in the ECEF frame, the GNSS

measurements supply us global information. The inertial and visual measurements provide relative

information, defined in the local frame. To fuse this information cohesively, we must augment our

estimation approach with the location of the ECEF frame with respect to our inertial coordinate

frame, but there is some question about whether to pin our estimation approach at the ECEF origin,

or at some locally-defined frame, such as the trajectory origin.

Initial attempts at this fusion pinned the estimation approach at the ECEF frame, and attempted

to estimate the location of the inertial frame (Figure 7.8, left). The problem with this approach is

that GNSS measurements can induce discontinuities in the relative transforms used by the IMU

and vision residuals. This can degrade the performance of the nonlinear least-squares solution

and cause it to converge to local minima. We found it was more robust to hold the inertial frame

constant, and instead estimate the transform between the origin and the ECEF frame (Figure 7.8,

right).
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Figure 7.8: Illustration of some of the coordinate frames used in GV-INS state estimation. Frames drawn
in blue dashed lines are estimated, while black lines are fixed. Our original approach is shown on the left,
where the ECEF frame was held constant. This induced large jumps in relative position, that caused poor
performance when also optimizing relative vision and IMU information. The approach on the right was
found to be much more effective.

7.7 Factor Graph Management

Now that we have derived the factors for the three main components of our MHE approach, we

can discuss the actual implementation of our factor graph. Because the nodes of our factor graph are

the optimization design parameters, having too many nodes could increase the solver time beyond

real-time constraints, but having too few could shorten our window enough that insufficient motion is

contained in the window to properly observe all the desired states. In addition to node management,

another important detail to acheiving good performance in vision-aided MHE approaches is the

initialization of the IMU bias estimate. In this section, we first discuss the management of our

factor graph so that we can meet real-time requirements given the computational limitations of our

MAV. We then describe the initialization strategy used in our hardware experiments. We found that

both of these details were critical to good estimation performance given our platform, sensor suite

and environment.
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7.7.1 Node Declaration

In our graph, we carry a window of base states, that contain the position, velocity, attitude

and clock bias at some time t.

(
x =

[
pI

b/I
vb

b/I
qb

I
τ

]T
)
, a single IMU bias node for our entire

window

(
b =

[
ba bω

]T
)

and a node for the transform from the earth origin to our trajectory origin(
T I

E

)
. We also carry a node for the inverse depth to each feature at the time it is first seen in our

window (ρi) and the switching parameter (κi) for every pseudorange measurement.

Because we must have a node to tie measurements to in our graph, we must have nodes both

for GNSS and camera measurements. However, having both sensors feeding our state estimator

significantly increases the number nodes in our window and has a detrimental effect on real-

time performance. Therefore, in contrast to [86], instead of creating a new node at every image

and removing factors that do not connect to keyframes, we create a new node after a keyframe

declaration, but then re-use it from frame to frame until either a GNSS measurement occurs, or until

another keyframe is declared (See Figures 7.9 and 7.10). This significantly reduces the number of

nodes held in the window and makes optimization with both sensors manageable.

Figure 7.9: Diagram of the creation of nodes over a keyframe interval without GNSS. A new node is created
on the first image after a keyframe is declared, and this node is moved at every subsequent image until a new
keyframe is declared.

7.7.2 Node Removal

To ensure real-time performance, we must also remove nodes from the sliding window as

they become too old. In our sliding window, we hold either a maximum number of keyframes,
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Figure 7.10: Diagram of the creation of nodes over a keyframe interval with GNSS. A new node is created at
either the first image or GNSS measurement after either a keyframe is declared or after a GNSS measurement.
This node is moved at every subsequent image until a new node is declared.

or maximum number of nodes, whichever results in the fewest number of total nodes. We do

this because GNSS measurements can often accrue much faster than keyframes, and limiting our

window on keyframes alone can result in poor real-time performance.

Removing keyframes from our sliding window is complicated by the fact that feature projection

factors are all tied to both an origin keyframe, or the anchor, and also the subsequent keyframes.

This is further complicated because we estimate the inverse depth to the feature in the anchor

frame. Therefore, if we wish to remove a keyframe from the window that serves as an anchor to

keyframes still in the window, we need to slide the anchor from the keyframe to be removed to the

next keyframe in the window. This is illustrated in Figure 7.11.

There are two main phases to moving an anchor from frame i to frame j. The first step is to

calculate the inverse depth ρ j in the new anchor frame using the current estimate of ρi as

1

ρ j

ζ
cj

l/cj
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j
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 .

The second step is to update all the factors with the new ζ
cj

l/cj
from the new anchor.
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Figure 7.11: Diagram of the management of nodes in the sliding window. If keyframes are removed that
are serving as anchors for future measurements, the factors are recomputed after moving the anchor to next
keyframe in the window.

7.7.3 Graph Initialization

As noted in other V-INS literature, proper initialization of a visual-inertial MHE system is

crucial to good performance. V-INS systems are particularly sensitive to the initialization of IMU

biases, so in [86], graph initialization takes place through a rigorous three-step process that includes

mapping the local environment up to a scale factor, then using this map to resolve the gyroscope

and accelerometer biases. Because we are performing our state estimation onboard a MAV, we

assume that the agent is not moving so long as propellers are not spinning. Therefore, we adopt a

much simpler static start procedure.

To perform the static start, we turn on the system and wait for approximately 30 seconds before

liftoff. During this period, we disable image updates and instead add residuals that enforce a

zero-position, velocity, and yaw constraint. If we assume that the MAV starts at the origin with

zero yaw, then the static start residual is given as

r0 =



pI
j/I

vI
j/I

ψ
j

I


,

where ψ is the current yaw angle. This residual is weighted by Σ0, which is tuned manually. GNSS

factors may also be active during the static hold period if GNSS measurements are available to
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initialize T I
E
. Initial attitude is impossible to determine precisely during the static start, as there

is ambiguity between accelerometer bias and roll and pitch, however, the accelerometer scale and

gyroscope biases very quickly converge to their true values. The static hold period is finshed upon

receiving an IMU measurement with magnitude greater than a specific threshold, which we assume

to be the take-off event. After this point, the static hold residuals are no longer applied.

Finally, because our MAV begins with the camera lens less than an inch from the ground, the

first few images are typically out of focus. Therefore, after the static start, we keep the image updates

disabled for a short period until we get high enough that we can observe trackable landmarks. After

we start tracking a sufficient number of useful landmarks, then the system is fully initialized and

image updates are enabled

7.8 Results

In the following sections, we evalulate the performance of our described approach against the

state-of-the art in V-INS [86] and a sliding-window, inertially-aided adaptation of [108,109], which

we believe to be equivalent to state-of-the-art in G-INS with a consumer-grade, single frequency

receiver. Two other estimators were also used to show the influence of the switching parameter and

visual fusion. These five estimators, their differences and identifiers are enumerated in Table 7.1.

Comparison studies were performed both in simulation (Section 7.8.1) and in a hardware

experiment (Section 7.8.2). In both the simulation and hardware studies, all measurements (feature

pixel locations, IMU and raw GNSS measurements) were fed to each of the five estimators.

However, in the case of hardware results, only the GV+κ estimator was run in real-time, while

results from all other estimators were post-processed using recorded data.
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Table 7.1: Description and identifiers of estimator variations used in experimentation.

G
GNSS-only with naive version of the pseudorange measurement model
(Eq. 7.15).

G+κ GNSS-only sliding window adaption of [108,109] with inertial fusion.

V Vision only. Implementation of [86].

GV GNSS and vision, but using the naive pseudorange measurement model.

GV+κ
GNSS and vision, as well as the switching parameter pseudorange model
given by Eq. 7.17.

7.8.1 Simulation Results

Simulation results are instructive in this case, as the only realistic reference truth for hardware

results is a high-end inertial navigation system or LIDAR-based SLAM, which are both much too

heavy for our MAV. Furthermore, simulation studies allow us to isolate the differences in various

systems, and control for various variables of interest. Finally, we also found that the simulation

study was useful for evaluating the switching parameter performance, as real-life multipath in

hardware experiments can be difficult to identify.

7.8.1.1 Simulation Description

Our simulator employs a nonlinear drag model for our multirotor agent, an IMU with a slowly-

wandering bias and additive Gaussian noise, and a downward-facing camera. Simulated landmarks

are tracked perfectly (i.e. no data association errors), but Gaussian noise is added to the individual

pixel measurements.

GNSS pseudorange and pseudorange rate measurements are simulated by placing satellites

according to broadcast ephemeris data collected in hardware and simulating the measurement with

the model given in Eq. 7.18. We then add Gaussian noise to arrive at the simulated pseudorange and

pseudorange rate. As the multirotor enters certain areas of our simulated environment, multipath
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error to satellites is simulated using Algorithm 1. These areas are placed adjacent to GNSS-denied

areas where measurements are not generated at all.
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Figure 7.12: Top-down view of simulated trajectory showing multipath and GPS denied areas

We simulated the quadrotor starting at rest at the origin, then flying a 5 meter, circular orbit

around the origin. The orbit also included a rise and fall in altitude of 4 meters, and a slow

oscillation in heading of approximately 90 degrees. This trajectory was chosen to excite all the

relevant motions ideal for monocular SLAM. Landmarks were chosen such that features in the

image were roughly evenly spaced. A multipath region was placed at px ∈ [−2.5, 1] and GNSS

measurements were denied when px ∈ (−∞,−2.5). The MAV started the simulation at p = 0, which

was inside the multipath area. Figure 7.12 shows a top-down view of this trajectory, including the

multipath and GNSS-denied regions.
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Algorithm 1 Simulation of multipath in simulation environment. P (m) is the probability of
a multipath measurement, max (m) is the maximum multipath error and σs is calculated using
Eq. 7.18. The simulated measurement σ̂s includes the multipath error and noise.

1: for s ∈ Satellites do

2: if pI
b/I

∈ Multipath Area then

3: if ms = 0 and sample (U (0, 1)) < P (m) δt then

4: ms = sample (U (0,max (m)))

5: else

6: ms = 0

7: σ̂s = σs + ms + sample (N (0, Σσ))

7.8.1.2 Results

The simulation results illustrate the effect of the different variations in estimator design. As

expected, Figures 7.13 and 7.14 show that prolonged periods of GNSS outage result in extreme

position and velocity errors in the GNSS-only estimators G and G+κ. However, after initial

convergence, the G+κ estimator is quicker to return to the true trajectory when GNSS measurements

are restored, even if they are multipath measurements.

Position and velocity estimation using vision alone has been well demonstrated in existing

work [86]. Our performance is comparable, resulting in decent velocity estimation, but wandering

position and heading. This is expected, as absolute position and heading are unobservable given

vision and inertial measurements only. However, a bit surprising are the results from the combina-

tion of vision and GNSS without the switching parameter GV. Without the switching parameters,

multipath causes significant jumps in the position estimation and degrades the whole solution.

The GV+κ estimator performs the best in this simulation. The vision component allows the

estimator to perform well when denied GNSS, and multipath is better identified in multipath areas

than the G+κ estimator. At some points during the simulation the G+κ estimator has smaller position

error, however, the vision-aided solution has a more accurate solution overall and consistently does

a better job of estimating velocity, even where good GNSS measurements are available. This is

important for MAVs that perform feedback control with velocity estimates.
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Figure 7.13: Position error of the five estimators in the simulation study

Switching parameter performance observed is similar, if not better than shown in [108, 109],

although this is difficult to quantify as neither [108] or [109] performed simulation studies to

quantify their switching parameter estimation performance. However, we suspect that the inertial

feedback in our approach makes multipath measurements quite costly to include as they introduce

large discontinuities in position and velocity. Therefore, the switching architecture becomes even

more advantageous in inertially-aided and vision-aided fusion of pseudorange. The estimates of κ

in the GV+κ estimator for the first eight satellites are shown in Figure 7.15.
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Figure 7.14: Velocity error of the five estimators in the simulation study

7.8.2 Hardware Results

Hardware experimentation was performed using the MAV shown in Figure 7.16. We used an

InertialSense µINS3 for collecting raw GNSS measurements, and a MYNT Eye Standard stereo

visual-inertial sensor. We used the left camera and IMU from the MYNT camera and removed

the aluminum case and infrared light projectors to reduce weight. Computation was performed

onboard using an NVIDIA TX2.

We configured the camera to report a 754×480 image at 10 Hz and inertial measurements at

200 Hz. The GNSS receiver was configured to report measurements at 5 Hz. The lower frame rate

and image resolution were required because of our use of a USB 2.0 interface to communicate with
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Figure 7.15: Switching parameter performance over the simulation with respect to the first eight satellites.
(There were 15 satellites that all showed similar performance, but the plot is truncated for clarity). The blue
line drops to zero if the measurement is truely multipath, green is the resulting κ value.

the camera. A USB 3.0 interface allows for higher framerate and higher resolution, however USB

3.0 jams GNSS signals at close range so we could not use it for this experiment. The camera was

configured with auto-exposure enabled for the outdoor to indoor transition and was oriented at a

40 degree downward pitch from level.

The hardware experiment took place on the east side of the BYU engineering building. This

building has a five story face on the east side, with a large alcove on the ground floor with loading

bay access. There is also a large parking lot just off the east side where a clear GNSS signal is
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Figure 7.16: Multirotor used in hardware experiment

accessible. This area provides easy access to clear-sky conditions (parking lot) multipath (near the

building) and GNSS-denied conditions (in the alcove) within a short distance of each other.

The MAV started on the sidewalk near the parking lot, where we waited for the broadcast

ephemeris for eight satellites while performing the static start calibration. We then flew towards

the building, into the alcove, and back out again, performing two loops, landing close to where the

flight started.

The results of our experiment are shown in Figures 7.17 through 7.20, where the GV+κ estimates

are plotted against the GNSS-only version (an inertially-aided, MHE adaptation of [108,109]) and

the vision-only approach [86] without loop closures. A video of the experiment can be found at

https://youtu.be/dUJOT0D3L3I.

Figure 7.17 shows the top-down view of the estimated position for the G+κ, V and GV+κ

estimators, and is the most instructive figure for identifying differences between the approaches.

In this figure, we can see that the vision-only estimator accumulates some heading and scale error

during initialization. This is normal for most VI approaches without loop closure [79]. Also, at

144

https://youtu.be/dUJOT0D3L3I


www.manaraa.com

Figure 7.17: Position estimation results in hardware experiment. The shaded red area indicates the boundary
of the alcove on the ground floor of the building.

around 150 seconds, feature tracking fails (this is best observed in the associated video), during

which the vision-only estimator experiences accumulates velocity error (seen in Figure 7.18), so

the position estimates of the second loop in Figure 7.17 for the V estimator are offset.

The G+κ estimator accumulates considerably more position error than the V and GV+κ esti-

mators during the experiment. Firstly, in Figure 7.17, it appears that the G+κ estimator incorrectly

estimated the initial transform from the ECEF origin to the trajectory origin T I
E
. During the flight,

the error in this transform was pushed into the position estimates, which results in the offset loops

observed in Figure 7.17. Furthermore, the G+κ estimator experiences significant position error
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Figure 7.18: Velocity estimation results in hardware experiment

during the GNSS-degraded transition. This is because without GNSS, the G+κ estimator either

must dead-reckon using IMU or fuse multipath GNSS measurements, neither of which produce

good position or velocity estimates (see also the large velocity errors in Figure 7.18).

While the G+κ estimator does not perform as well as the V or GV+κ approaches, Figure 7.21

illustrates how introducing the switching parameter significantly improves position estimation. The

G+κ estimator accumulates about 15 m of error at the worst point, while the G estimator without the

switching parameter regularly experiences well over 100 m of error, and would likely be completely

unusable for any autonomous operation in this environment.
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Figure 7.19: Attitude estimation results in hardware experiment

Finally, we can say that the GV+κ estimator performs the best in the hardware experiment,

and that the hardware experiment validates our simulation results. Position, velocity and attitude

estimation of the full proposed system GV+κ is superior to both the vision-only estimator (V) and

the GNSS-only estimator with switching parameters (G+κ). This is likely due to three primary

factors: First, the global nature of the GNSS measurement constrains the global drift that typically

occurs in a visual-inertial system. Therefore, GV+κ does not accrue the same initial scale and

heading bias that occurs in the visual-inertial system. Secondly, the doppler measurement of

GNSS signals provides direct velocity feedback so the period of feature tracking failure does not

significantly degrade velocity estimation like it does for the V approach. Finally, in contrast to the

GNSS-inertial solution, the visual feedback makes multipath signals more expensive to include in
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Figure 7.20: Switching parameter results for the first eight satellites in hardware experiment.

the solution so they are better identified by the switching parameter architecture. This happens

because position jumps significantly increase the cost associated with the projection factor residuals

It is also clear from this experiment that the switching parameter is critical to good performance

in the presence of degraded GNSS. Figure 7.21 shows the comparison of the GNSS-inertial

estimator both with and without the switching parameter, and Figure 7.22 shows the number of

satellites being fused during the different parts of the trajectory. Although we do not have access to

accurate understanding of which GNSS measurements are experiencing multipath, we expect the

number of valid satellite measurements to decrease as we approach the building. This is validated

by Figure 7.22, where the number of satellites being fused smoothly drops to zero or one as we
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Figure 7.21: Comparison of GNSS-inertial position estimation with and without switching parameter

enter the building, and then climbs back up to eight near the parking lot. Because GV+κ is able

to correctly identify multipath signals, it can correctly fuse global information from the GNSS to

reduce the global drift experienced by V while at the same time using the visual information to

correctly estimate position during GNSS outage. One interesting note is that the GNSS-Visual-

inertial estimator without the switching parameter (GV) actually experienced divergent behavior

about ten seconds into the flight and eventually accrues several kilometers of error. Upon close

inspection of this data, we have concluded that multipath errors from the GNSS measurements

cause large errors in depth estimation to all observable features. After this occurs, the solver gets

caught in local minima and does not recover at any time during the flight. Because the errors in

GV are so large, they have been omitted from the results plots for clarity.

149



www.manaraa.com

Figure 7.22: Number of satellites used in GV+κ solution during the trajectory. The shaded red area indicates
the boundary of the alcove on the ground floor of the building

7.9 Conclusion

In this work, we present GV-INS, a method to fuse GNSS, visual and inertial information in

a unified moving-horizon estimation framework. We demonstrated the algorithm in simulation

where we could prove the effectiveness of the switching parameter framework to identify and reject

multipath, and also in a hardware experiment where GV-INS was shown to be superior to both

G-INS and V-INS alone.
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Future work in this area could investigate the use of the carrier phase signal in the moving-

horizon estimation framework as a relative measurement between subsequent states, as well as the

incorporation of loop closures to provide even more global information and accuracy.

7.10 Appendix

The following sections derive the Jacobians for the pseudorange and projection factors that are

required for efficient implementation of the GV-INS estimation framework.

7.10.1 Pseudorange Residual Jacobian

The residual of the pseudorange measurement with the switching factor is given in Eq. 7.17.

For reference, this residual is given as

r′σs
=
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If we let the unit vector to the satellite be es =
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remember that

ÛpE
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= RE

I RI
bvI

b/I
,

and ignore Sagnac compensation in our Jacobian calculations, then the Jacobians of the residual

are given by
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7.10.2 Projection Residual Jacobian

The projection residual is given by Eq. 7.13 and is repeated here for reference:
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We also use the following identities to help us in the derivation of this Jacobian
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and define an intermediate variable
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We start first with the partial derivative of Eq. 7.13 with respect to the position of the origin

node i. This is derived as follows:
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Next, let us find the partial derivative of Eq. 7.13 with respect to the orientation of the origin

node. This is derived as follows:
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Similary, let us find the partial derivative of Eq. 7.13 with respect to the position of the

destination node j, which is given as

∂rζ

∂pI
j/I

=

∂

∂pI
j/I

Pζ

(
ζ̂

ζ̂

 − ζ̄

j

l/ j

)

= Pζ Z
∂

∂pI
j/I

(
R

cj

j
R

j

I

(
pI

i/I
+ RI

i

(
Ri

ci

1

ρ
ζ

ci
l/ci
+ pi

ci/i

)
−

(
RI

j p
j

cj/ j
+ pI

j/I

)))

= Pζ Z
∂

∂pI
j/I

(
R

cj

j
R

j

I

(
−pI

j/I

))

= −Pζ ZR
cj

j
R

j

I
,

and the orientation of node j, which is given as
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Finally, we give the derivation of the partial derivative of Eq. 7.13 with respect to the inverse depth

to the feature in the i node frame. This is given as
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CHAPTER 8: DIRECT RELATIVE EDGE OPTIMIZATION, A ROBUST ALTERNA-

TIVE FOR POSE GRAPH OPTIMIZATION1

8.1 Introduction

A pose graph is a data structure that encodes relative transform constraints between arbitrary

poses of one or multiple agents. The nodes of a pose graph represent the pose of each node

and the edges represent the relative transformations between nodes, both sequentially and non-

sequentially [138]. When using nonlinear optimization techniques to determine the maximum-

likelihood configuration of the pose graph, constraints can render the problem as over-constrained.

In the robotics community, pose graphs are commonly used to solve the full simultaneous local-

ization and mapping (SLAM) problem. The construction of pose graphs to solve the SLAM

problem is well researched and has been demonstrated extensively. Some notable examples

include [138–141]. In these applications, pose graph optimization is used to obtain a maxi-

mum likelihood estimate for all the poses in the map. Different techniques have been proposed

to improve the performance and robustness of pose graph optimization including graph reduc-

tion [122, 142], relaxation [143] incremental-pose parameterization [121, 144, 145] and relative

parameterization [146–148].

One drawback of global-pose optimization is a strong dependence on the quality of the ini-

tialization point for the graph, and there are several instances when large initialization errors may

arise. For example, small heading errors in a trajectory compounded over time can cause large

errors in the initial pose estimates [145, 149]. This phenomenon is illustrated in Figure 8.1. Large

1This paper was written by James S. Jackson, Kevin Brink, Brendon Forsgren, David O. Wheeler, and Timothy
W. McLain, and published in Robotics and Automation Letters in 2019 and was presented at at the International
Conference of Robotics and Automation in 2019 [137]
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Figure 8.1: Comparison of typical errors in global poses (left) vs individual edge constraints (right) given a
trajectory with heading error.

initialization errors also result when an agent is initialized without global information but later

gains global information during operation. In this case all initial pose estimates can be arbitrarily

far from their true position. Finally, in multi-agent problems, the initial alignment of each agent’s

trajectory is unknown and can be arbitrarily far from truth. Kim et al. [150] proposed a method

to mitigate this initial error between multiple agents, but requires additional complexity to handle

edges between the graphs.

Graph initialization is an active area of research and there are several prominent solutions that

have been proposed [150–156]. Of particular note, [155] and [156] have shown the guaranteed

optimization of pose graphs even given large initialization errors. These approaches restructure the

cost function of a pose graph optimization problem into a globally convex form with constraints

on the involved variables and use semi-definite programming techniques to guarantee the optimal

solution.

In this paper, we discuss the benefits of optimizing directly over edge constraints, or relative

edge optimization (REO), as opposed to the more popular global pose optimization (GPO) and we

extend previously described relative approaches [146–148] to allow optimization over all edges in
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pose graph and eliminate the map tears that occur from optimizing over a local subset. We also

show that posing the problem in a relative context side-steps the above mentioned initialization

problems and keeps the problem well-conditioned even in the worst of these situations due to its

more linear representation.

Performing pose graph optimization over all degrees of freedom of the agent and over all

measurements can be computationally prohibitive over long distances with high sensor update rates.

In cases where an IMU is available, the roll and pitch of an agent become locally observable so to

reduce computational requirements sometimes only the locally-unobservable states are estimated

using loop closures or global information in an optimization problem over SE(2) × R [9, 51, 157].

This optimization also often occurs on a reduced form of marginalized state and measurement

information [9, 51, 157] to further reduce computational requirements. While the work we present

here is designed to be applied in such a situation, it could also be applied to other SLAM problems,

such as those in SE(3).

The following sections first derive relative edge optimization and describe how to perform

relative batch optimization over all edges in a cyclic graph. Comparisons between REO and GPO

are then performed and discussed with the use of a simple simulation study. Finally, results from a

hardware experiment with multirotor agents are shown and discussed.

8.2 Derivation

Pose graph optimization is often formulated as a least-squares optimization problem and this

formulation can be derived using a classical least-squares optimization approach [8] or from a

Bayesian perspective in a factor graph [120]. If the noise about graph edges is assumed to be

Gaussian, both derivations ultimately lead to the following expression for the global cost function
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of the optimization given in [138]

F (ẑ, z̄) =x̄⊤0Ω
−1
0 x̄0 +

∑
i∈N

(x̂i − x̄i)
⊤
Ω

−1
i (x̂i − x̄i)

+

∑
i

∑
j∈Si

(
ẑ j/i − z̄ j/i

)⊤
Ω

−1
j/i

(
ẑ j/i − z̄ j/i

)
, (8.1)

where z j/i is the edge connecting nodes i and j, calculated as x j ⊟ xi; ˆ[ · ], ¯[ · ] are the estimated and

measured quantities, respectively; Si is the set of nodes, x j , connected to node xi; N is the set of all

nodes in the graph and Ω is the covariance, or weighting assigned to the respective measurements.

Note that if x j ∈ Si, then xi < Sj , else a 1/2 weighting on z j/i would be required to avoid double

counting edge constraints.

The problem is then to find the optimal set of poses

x̂∗ = arg min
x̂

F (x̄, x̂, z̄, ẑ) . (8.2)

To solve Eq. 8.2 in a global context the pose graph is initialized by first defining an initial global

pose estimate for each vertex x̂i then determining the estimated edges ẑ j/i and then optimizing

using an appropriate method. In general, this is done using some variety of Gauss–Newton or

Levenberg–Marquardt optimization. Significant work has been done in reducing the complexity of

this problem [121, 122, 138] so that it can be performed in real time under realistic computational

constraints.

Optimizing over x̂ in Eq. 8.2 inherently casts the optimization problem into a privileged coor-

dinate frame. While this is often appropriate, when only relative information is available the initial

global pose estimates can be arbitrarily far from their true position. If these systems then encounter

global inputs, or are operating in a multi-agent environment with unknown intial configuration and

encounter constraints between agents, the initial error can cause the Newton method to converge to

a local minimum because of linearization error in pose-based Jacobians.
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Figure 8.2: Divergent behavior observed in global pose optimization of a multirotor flight around a baseball
diamond due to poor initialization. Green lines indicate the original trajectory, magenta dots and lines
indicate GPS measurements and their associated poses. The blue lines indicate the initial trajectory before
optimization on the left and post-optimization on the right.

Figure 8.2 demonstrates this phenomenon in an exaggerated example. The figure shows results

of global-pose optimization on a hardware experiment where a multirotor agent was first given

only relative odometry measurements but later receives several delayed GPS inputs. Because no

global information was initially available to the system, the agent was initialized with zero heading,

although its true heading was approximately 180 degrees. The initial heading error induced large

initial errors in global pose and the combination of poor linearization and strong GPS measurement

constraints caused the optimization to converge to an incorrect local minima. While this example

is exaggerated and there are methods intended to account for this [150–154], it illustrates the poor

linearization characteristics of global poses, susceptibility to local minima, and a general lack of

robustness when operating with sparse globally defined inputs.

Generally speaking, these situations can be difficult to detect and recover from, and are best

avoided all together through either better a priori information, or more robust approaches such as

the one suggested in this paper.
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8.2.1 Derivation of Relative Edge Optimization

If one assumes the system only has measurements of transforms between nodes (i.e. z̄ j/i = x j⊟xi)

with covarianceΩ j/i, and that edges are only considered once, then Eq. 8.1 reduces to the weighted

sum of edge constraints and can be rewritten as

F (x̂, z̄) =
∑

i

∑
j∈Si

( (
x̂ j ⊟ x̂i

)
− z̄ j/i

)⊤

Ω
−1
j/i

( (
x̂ j ⊟ x̂i

)
− z̄ j/i

)
=

∑
i

∑
j∈Si



( (x̂ j ⊟ x̂i

)
− z̄ j/i

)


Ω
−1
j/i

. (8.3)

To further generalize the above case, pose-based portions of Eq. 8.1, (x̂i − x̄i)
⊤
Ω

−1
i

(x̂i − x̄i), can

be rewritten as relative constraints [9, 142, 158]. This makes the simplification in Eq. 8.3 quite

reasonable. Further, if we reparameterize our state in terms of the estimated relative transform

between nodes, ẑ j/i = x̂ j ⊟ x̂i, as opposed to estimating the nodes themselves, Eq. 8.3 can be

expressed as

F (ẑ, z̄) =
∑

i

∑
j∈Si



(ẑ j/i − z̄ j/i

)


Ω
−1
j/i

. (8.4)

Theorem 8.2.1. Given a pose graph that can be expressed purely in terms of full relative constraints

(not including partial constraints such as range or bearing), the poses reconstructed from the relative

optima arrived at by minimizing Eq. 8.4 starting at the initial node position x0 are identical to the

global optima arrived at by minimizing Eq. 8.3.

Proof. Let us assume that our estimated poses are at the optimal value, x̂ = x̂∗ = arg minx̂ F (x̂, z̄)

and define a compounding function

x̂i = g
k
i (ẑ ∈ Ek, x0)
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that compounds some subset of edges Ek in the appropriate manner from an arbitrary origin (assume

x0 without loss of generality) up to the node xi. This is illustrated with the green arrow in Figure 8.3

where the position of x4 is computed using the function g
k
4 with Ek =

(
z1/0, z4/1

)
. For non-trivial

graphs, there could be multiple selections of Ek that could construct gk
i
, and these paths can be

combined to generate the equation

x̂i = GM
i (ẑ, x0) (8.5)

=

1

m

∑
Ek∈M

g
k
i (ẑ, x0)

where M is a set of possible edges that begin at x0 and terminate at xi with cardinality m = |M |.

At the optimum we have that gk
i
(ẑ∗, x0) = x̂∗

i
∀Ek , (i.e. every possible edge sequence results in the

optimal x̂∗
i

solution when evaluated at ẑ∗). Therefore, GM
i
(ẑ∗, x0) will also have the same optimal

solution for x̂i regardless of which edge paths are used.

If we re-write Eq. 8.3 using Eq. 8.5 we get an expression for our global optimization function

in terms of only the relative constraints and the initial pose

F (ẑ, x0, z̄) = ∑
i

∑
j∈Si




((GM
j (ẑ, x0) ⊟ GM

i (ẑ, x0)
)
− z̄ j/i

)



Ω
−1
j/i

(8.6)

If we assume that we have optimized Eq. 8.6 with respect to edges (i.e. ẑ = ẑ∗ = argminẑ (F (ẑ, x0, z̄))

then

∂F

∂ẑ
= 0,

which implies that

∂F

∂x̂

∂x̂

∂ẑ
= 0,

and because ∂x̂/∂ẑ , 0, this implies that

∂F

∂x̂
= 0.
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The above proof shows that the cost functions Eq. 8.6 and Eq. 8.1 share the same minima,

regardless of parameterizing with respect to pose or edges. This fact also allows for leeway in the

selection of which paths, Ek , are selected. The only requirement is that all edges in the graph are

included, or else one cannot fully reconstruct Eq. 8.6. In practice, the choice of which edges are

used could have a significant effect on the resulting Jacobians used in optimization. The choice of

edges will therefore affect optimization performance, however the impact of this choice appears to

be small compared to the nonlinearities induced by large errors in a pose-based optimization and

regardless of loops/paths chosen, the global minima will remain unchanged.

In practice, actually solving Eq. 8.6 for arbitrary edge paths is not straightforward, especially if

loops are present. Other relative approaches to loop closure [146,147], use a sliding window, or an

active set of edges that do not traverse the full loop. The advantage to these approaches is that the

algorithms run in constant time, even at loop closure (because only a limited set of nodes in the loop

are considered). However, these approaches result in map tears at the boundary of the active set of

nodes that lead to global map inconsistency. If we instead construct M in such a way that Ek forms

non-trivial loops that includes z j/i for the evaluation of GM
i

and GM
j

, then we can rewrite Eq. 8.6

as a sum over loops rather than individual edge constraints and optimize each loop independently.

This is possible because any common edges involved in the pose reconstruction of GM
i

and GM
j

are

subtracted out in Eq. 8.6, and only a simple loop remains (see Figure 8.3). Because some edges may

be traversed by more than one loop, edges must be weighted within a loop inversely proportional

to the total number of loops in the optimization which traverse that edge. This ultimately leads to

the final form of the cost function for relative edge optimization given as

F (ẑ, x0, z̄) =
∑
L∈M

∑
j,i∈L

1

n j/i



ẑ j/i − z̄ j/i




Ω
−1
j/i

, (8.7)
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Figure 8.3: Subtracting two concatenation functions removes any common edges between the two paths,
resulting in a simple loop. The blue path is the result of subtracting the green path from the red path and
does not contain the common edge z1/0.

where M is the set of loops that must fully span the set of edges, L is a single loop and n j/i is

the number of times the edge z j/i appears in M . The process of segmenting the graph into simple

loops is illustrated in Figure 8.4. The graph is split into two simply-connected loops that share

some common edges. The sectioning of the graph is arbitrary, and two potential options are shown

in the figure.

Starting at Eq. 8.7, we can re-construct Eq. 8.6 by selecting any subset of loops that contain every

xi and rewriting edge estimates in terms of the compounding functions GM
i

(i.e. ẑ j/i = GM
j
⊟GM

i
).

If we expand this and regroup on nodes xi, we arrive back to Eq. 8.6, which we know is equivalent

to Eq. 8.3.

The cost function in Eq. 8.7 provides the user with significant flexibility and can make the

optimization tractable. If all loops are considered, the optimization can become computationally

expensive. However, users can select a subset of loops for edge-based optimization that maintains

the global minima, and is also likely to provide good structure, accurate Jacobians, and tractable

computational loads to the optimization algorithm. While this this paper does not address selection

of desired loops specifically, it will be demonstrated in Sec. 8.3 that even for an arbitrary selection

of loops the edge-based optimization applied to Eq. 8.7 shows a dramatic increase in robustness

when compared to pose-based optimization of Eq. 8.6. We now discuss the optimization of Eq. 8.7.
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8.2.2 Solving REO

We wish to find the optimal update ∆z∗ to our initial edge estimate ẑ. Letting ẑ+
j/i
= h

(
ẑ j/i,∆z

)
where h properly considers the way that ∆z maps into the edge update, we see

F
(
ẑ+, z̄

)
=

∑
L∈M

∑
i, j∈L

1

n j/i




ẑ+j/i
− z̄ j/i





Ωj/i

=

∑
L∈M

∑
i, j∈L

1

n j/i



h
(
ẑ j/i,∆z

)
− z̄ j/i




Ω
−1
j/i

. (8.8)

If we take the derivative of Eq. 8.8 with respect to ∆z and set it to zero, we can solve for the optimal

edge update ∆z∗.

Defining and evaluating H = ∂h/∂ẑ. is non-trivial because there is no straightforward way to

find the interactions between edges h
(
ẑ j/i,∆z

)
in the loop. Previously published approaches to

REO [146–148] side-step this issue by optimizing a local subset of edges during a loop closure.

However, as noted in [146–148], this often results in a globally inconsistent map. In contrast, we

address these interdependent constraints by first reparameterizing our cost function into the sum of

loops. We approximate h
(
ẑ j/i,∆z

)
by modeling each loop as an independent loop closure with a

series of odometry edges and a single loop closure edge. The odometry edges and their associated

perturbations are concatenated normally and all error is lumped into the loop closure edge resulting

in the following segmented definition for h:

hodom (
z j/i,∆z

)
= z j/i + ∆z j/i

hLC (
z j/i,∆z

)
=

(
zb/i + ∆zb/i

)
⊞

(
zc/b + ∆zc/b

)
· · · ⊞

(
z j/z + ∆z j/z

)
.

Finding an approximation of Hj/i is now possible, even in non-trivial spaces for all edges in the

graph, enabling a globally consistent solution. For example, in SE(2), Hodom
j/i

= I, and an example
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algorithm for calculating HLC
j/i

is given in Algorithm 2. This algorithm could be modified to

accommodate other systems such as SE(3)

The distinction between loop closure and odometry edges in a simple loop is somewhat arbi-

trary. In our implementation we have chosen the loop closure edge as the most recently acquired

measurement in the loop. This is an area of future study because, as mentioned before, the choice

of this edge likely influences optimization performance.

Figure 8.4: A pose graph, composed of two simply-connected loops that share a single edge. We model
the graph as the sum of a subset of simply-connected loops. Two ways to segment this graph are shown here
for reference, but there is a third perfectly valid configuration which is not shown.

Algorithm 2 Calculation of Hℓ
a/z

for a pose graph cycle with reversed edges in SE(2)

1: for z j/i ∈ ℓodom do

2: if dir
(
z j/i

)
> 0 then

3:
∂∆ta/z

∂∆t j/i

=

∏
m,n<i, j

Rn
m

4: else

5:
∂∆ta/z

∂∆t j/i

= −
∏

m,n≤i, j

Rn
m

6: for z j/i ∈ ℓodom do

7: if dir
(
z j/i

)
> 0 then

8:
∂∆ta/z

∂θ j/i

=

∑
m,n>i, j

∂∆ta/z

∂∆tn/m

∆tn/m

9: else

10:
∂∆ta/z

∂θ j/i

=

∑
m,n≥i, j

−
∂∆ta/z

∂∆tn/m

∆tn/m

11:
∂θa/z

∂θ j/i

=dir
(
z j/i

)
12:

∂∆ta/z

∂θ j/i

= 0
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8.3 Results Comparing Pose and Edge-based Optimization

Several simulation studies and a hardware experiment were performed to illustrate some of

the similarities and differences of global pose and edge-based optimization. The first study illus-

trates the equivalence between REO and GPO in well-conditioned problems and the second study

demonstrates the improved robustness of REO compared to GPO in the presence of noisy edge mea-

surements. The third study illustrates the robustness of REO to gross initial heading error, where

GPO often fails completely. Finally, the hardware experiment demonstrates that the algorithm

works on real-world data collected by an autonomous system and is well-suited for multi-agent

scenarios.

Each simulation study focused on the optimization of the pose graph of a house-shaped trajectory

in SE(2) shown in Figure 8.5 that contains nine nodes and five loop closures. This trajectory was

chosen because it is simple enough that properly converged graphs are easy to identify, but also

complex enough to illustrate non-trivial items of discussion. The Levenberg-Marquardt optimizer

implemented in GTSAM [85] was used as the GPO algorithm, while a prototype implementation

of Algorithm 2 was used for REO. To evaluate performance of the optimization routines, we

considered the RMS error of the final optimized position of each node in the graph

J =
1

N

N∑
i=0

‖x̂i − xi‖ ,

where the heading state of each node was not considered in the RMS error metric to avoid scaling

ambiguity between position and heading error. The pose of the solution optimized by REO was

calculated by starting at the same origin pose estimated by GPO and compounding the optimized

edge estimates to put both solutions into the same frame of reference.
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8.3.1 Simulation Example 1: Well-Conditioned

The first study illustrates that for a typical, well-conditioned trajectory, the optimizations perform

equivalently. The house trajectory was corrupted with small amounts of random Gaussian noise

on both translation and heading (see Table 8.1) and a loop closure was placed between nodes at

each corner of the square in the house. One thousand of these trajectories were solved by both

optimization routines and an example is shown in Figure 8.5. Every one of these optimizations

produced virtually identical results between global pose and edge-based optimization. A histogram

of RMS error of the solution found by both optimization algorithms is also shown in Figure 8.5.

Because of the noisy inputs, neither approach perfectly resolves the initial trajectory.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
initial
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REO
GPO

0.025 0.050 0.075
0

100

200

300 REO

0.02 0.04
Root Mean Squared Error

0

100

200
GPO

Figure 8.5: One sample and summary results of simulation example 1 where trajectories were corrupted
with small errors in both translation and heading. All trials had nearly identical optimization results between
relative-edge and global-pose optimization. The histogram shows the spread of the RMS error for both REO
and GPO over 1000 trials.
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Table 8.1: Table of noise parameters used in the simulation examples.

Sim # σ2
x (m

2) σ2
y
(m2) σ2

ψ (rad2)

1 1 × 10−5 1 × 10−5 1 × 10−5

2 1 × 10−3 1 × 10−3 1 × 10−1

3 1 × 10−5 1 × 10−5 1 × 10−2

8.3.2 Simulation Example 2: Large Noise

As noted earlier, a problematic situation for global pose optimization occurs when significant

heading error compounds over several edges to produce poor initial pose estimates. To model

this situation, the second simulation study was to optimize random house trajectories that were

generated with significant noise on translation and heading (see Table 8.1). Figure 8.6 shows an

example of one of these trajectories, and a histogram of the RMS error of the two approaches.

In this situation, while GPO was able to find the correct solution much of the time (as shown by

the large bin close to zero in the histogram in Figure 8.6), it sometimes failed to find the solution

at all and resulted in divergent behavior. REO, however, found the appropriate minima every time.

Although the fit quality is reduced compared to the low noise case, as expected, REO displays

significantly more robustness than GPO in this case.

8.3.3 Simulation Example 3: Global Heading Misalignment

Many global pose optimization methods struggle when the initial heading is inaccurate. This

sort of situation often occurs in GPS-denied navigation or multi-agent problems when, for lack of

better information, an agent is initialized in a nominal direction that is out of alignment with its

true global heading. To illustrate this, a simulation study was performed where the house trajectory

was initialized with 90 deg of error in global orientation. Small amounts of translation noise and

heading noise were applied to each edge (see Table 8.1) and loop closures between the corners of

the house were replaced with loop closures to a virtual node co-located at x0 and connected to x0

with a zero-information edge as described in [9, 142, 158]. Figure 8.7 shows a sample trajectory
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Figure 8.6: One sample and summary results of simulation example 2 where 1000 trajectories were corrupted
with large errors in both translation and heading. GPO was often able to find the solution, however, it diverged
in approximately 10% of cases (as shown in the RMSE histograms). REO found the optimal solution each
time.

and summary results from this study. The results of this study illustrate how GPO struggles in this

situation and may end up stalling in a local, and incorrect, minima.

The fundamental problem illustrated in Sec. 8.3.2 and Sec. 8.3.3 is the compounding of errors

and uncertainty that occurs in the pose parameterization. As a result of these large errors and

uncertainty, pose-based Jacobians must be evaluated far from the solution and incur significant

linearization error (See Figure 8.1). In contrast, the error and uncertainty about any relative

constraint is independent of any other edges. This means that a relative parameterization is much

more linear in nature, and easily deals with problems such as arbitrarily large heading misalignment.

This idea is illustrated by a loop containing four edges with heading error in Figure 8.8. Note the

size of ∆x1 and associated uncertainty in the global update (upper right) compared the incremental
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Figure 8.7: One sample and summary results of simulation example 3: the house trajectory simulation study
with 90◦ initial heading error. GPO was often able to find the solution, however in approximately 40% of
cases, it diverged (as shown in the RMSE histogram). REO found the optimal solution for each of the 1000
trajectories.

edge updates ∆z j/i (bottom). Because the uncertainty estimates for edges do not compound like

they do for poses, both the error and uncertainty for a relative edge constraint are typically lower

than its connected poses, and therefore, linearization errors are smaller. For this reason we believe

that the recent globally guaranteed methods in global pose optimization [155,156] could be applied

to our relative parameterization of the cost function. Such an approach would combine the benefits

of guaranteed global convergence with the smaller initial error in the relative parameterization and

potentially improve the speed of convergence.

8.3.4 Hardware Experiment

To demonstrate REO on a non-trivial data set, the algorithm was used to optimize data collected

by an experimental autonomous navigation system flying two loops through an indoor/outdoor
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Figure 8.8: A simple loop of four nodes and the associated updates to pose (upper right) and edges (bottom).

environment with an RGBD camera using a multirotor aircraft, as described in [51] and shown

in Figure 8.9. The data includes 891 nodes and 30 loop closures calculated using the methods

described in [51] and is shown in Figure 8.10. Each loop is approximately 100 meters around and

the noise parameters for the experiment are given in Table 8.2.

Table 8.2: Table of noise parameters in the hardware experiment.

Edge Type σ2
x (m

2) σ2
y
(m2) σ2

ψ(rad2)

Odometry 8.2 × 10−4 8.2 × 10−4 2.2 × 10−7

Loop Closure 1 × 10−5 1 × 10−5 1 × 10−3

Both algorithms produced similar results to the ones found in [51]. Because the results were

not identical they were both evaluated using the original cost function without global information,

given in Eq. 8.4. The the value of the cost function for REO was 0.00303 and for GPO was 0.115.
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Figure 8.9: The hexacopter used to collect the data in the hardware experiment

The specific reason for the difference between the result given by two algorithms is unclear but may

be due to GPO reaching a local minima close to the global solution.

Initial Data REO

Path Loop closures

GPO

Figure 8.10: The results of the optimization when one agent is collecting data.

In a second experiment, to illustrate a collaborative mapping problem, the same data set was

used but the data was split in two as if it had been collected by independent agents. The initial

position of each agent was assumed to be unknown and therefore one agent was initialized with a
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heading error of approximately 180 deg. The associated paths and loop closures for each agent can

be seen in Figure 8.11.

Initial Data

REO

Path Loop closures

GPO

Figure 8.11: The results of the optimization when multiple agents are collecting data. In the plot of the
initial data the blue and black lines are the data collected by the first and second agent respectively.

In the multi-agent case, GPO failed to converge to any solution other than the initial guess.

Additional testing revealed that GPO only converged if the initial heading error was less than

100 deg. This indicates that the jacobians of the cost function were so ill-conditioned that the

cost function appeared locally flat and the stopping condition was satisfied in GPO after the first

iteration. REO, on the other hand, converged for the given initial heading error between agents and

closely matches the results in Figure 8.10 and [51].

In REO the majority of error in the graph at initialization exists only in the loop closure edges

and there is little incentive for the optimization to modify odometry edges until the maps are

first aligned. GPO does not have this property, so previous approaches deliberately inform the

174



www.manaraa.com

optimization of the alignment error through the addition of extra anchor nodes and modification of

the loop closure edges [150]. We require no such modification, and all constraints can be considered

homogeneously just by nature of the parameterization.

In a real-time application, it is likely that an optimized implementation of REO would perform

slower than the GPO implementation in GTSAM because of the dense Jacobian REO produces.

However, given the demonstrated robustness of REO over traditional methods, optimization of the

REO algorithm is of interest and we believe that REO can be refined to run in real time on problems

of practical importance.

8.4 Conclusion

In summary, we have shown that optimizing with respect to relative-edge constraints is robust to

large initial and propagated heading errors. We have extended the relative optimization technique

presented in [146] to avoid map tears that occur when optimizing only a subset of edges. With these

improvements, we conclude that REO should be considered for use in place of, or in tandem with

GPO, for solving graph optimization problems that exhibit large initial and propagated heading

errors that have proven problematic to global approaches.
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK

Before we can capture the exciting opportunities provided by autonomous MAVs, we must first

improve robustness to autonomous operations in GNSS-degraded areas. This dissertation treaded

a broad range of problems, starting with the lowest levels of flight control and working up to the

multi-agent mapping problem, all with a focus on improving robustness in these areas. Chapter 3

discussed improving the low-level flight control architecture to enable the flexible experimentation

and rapid prototyping that enabled the rest of the work and has been subsequently used in many

projects both at BYU and in other universities around the world.

Chapter 4 presented a method to improve the execution of commanded trajectories by performing

optimal control directly on the rotation manifold. This work showed that performing optimization

directly on the manifold results in a significant improvement in the computational efficiency of

optimal control for a MAV, exceeding the state-of-the-art. This work was built upon in [13] in

which hardware demonstrations of this method showed improved computational efficiencies when

compared with state-of-the-art, and validated the theoretical contributions of Chapter 4. Chapter 5

described a novel method to rapidly adapt to unknown and changing environments. This method

was demonstrated in several hardware experiments to validate the practical usefulness of this

method.

Given fast, accurate and save control command execution provided by the new flight control

architecture, optimal control strategies and obstacle avoidance, the next main area of work presented

targeted the problem of robust state estimation in GPS denied and GPS-degraded environments.

Chapter 6 showed how improving the dynamic model, adding partial updates and a keyframe step

to monocular visual-inertial filtering significantly improved filter accuracy and consistency. These
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improvements are fairly simple to implement, and incur almost no computational cost, but yield

significant benefits.

Unfortunately, a visual-inertial system is still unable to avoid drift, as visual information is

inherently relative. GNSS is a clear candidate to provide global information, but including GNSS

information in a GNSS-degraded area is not trivial. Chapter 7 presents GV-INS as an elegant way

to incorporate this information in a MHE framework. The use of MHE not only improves the

visual-inertial component of the approach, but it allows for flexible measurement models, such as

the switching parameter that was shown to effectively reject multipath. Chapter 7 also showed that

the proper fusion of visual, inertial and GNSS measurements results in a synergistic relationship

between the different sensors. Visual information improves multipath rejection, and properly fused

GNSS measurements improves depth and velocity estimation that are sometimes difficult in a purely

visual-inertial system.

Finally, some potentially rewarding applications of MAVs includes collaborative operation of

multiple agents. The other work in this dissertation provides a foundation for robust operation

of a single agent, but fusing information from multiple agents can be difficult, and is not always

possible with traditional methods. Relative edge optimization (REO) is a potential alternative to

the traditional global pose optimization (GPO) framework which is able to overcome many of

GPO’s limitations. REO has been shown to outperform GPO in situations with significant error in

relative pose estimates, or initial heading error. These conditions are very common in multi-agent

situations and REO is a strong candidate to solving these kinds of problems.

9.1 Recommendations for Future Work

Limitations of Monocular SLAM approaches This dissertation focused on improving the ro-

bustness of only monocular SLAM. It is probable that a stereo or multi-camera setup could provide

additional robustness. Existing approaches to stereo-inertial odometry suffer from issues when data
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mis-association cause significant estimation errors. The use of MHE with a switching parameter

or direct pixel intensity methods may improve robustness to these issues.

Carrier-Phase Based Relative State Estimation When performing GNSS fusion in a MHE

context, we discovered an interesting analog between the GNSS carrier-phase measurement and

the feature projection measurement model. The carrier-phase measurement is cleverly used in

real-time-kinematic (RTK) methods by differencing multiple measurements between two receivers.

It is not obvious how to incorporate this measurement from a single receiver in a filtering state

estimation approach, however, in a MHE scheme, it appears that we can difference measurements

to the same satellite using the same receiver at different time instances to achieve many of the same

advantages enjoyed by a two-receiver RTK approach. Granted, we will only be able to observe

relative information between subsequent states, but this information could be just as useful as visual

information in improving real-time performance. Pursuing this avenue of research is an interesting

opportunity that could potentially yield significant improvements in accuracy and robustness.

Limitations of REO While REO is significantly more robust to significant errors and initial

alignment problems, it is computationally inefficient, and does not scale well with increasing

numbers of loop closures. Making REO computationally scalable would be a significant effort,

but could yield impressive robustness to detecting false loop closures, poor graph initialization and

other real-world conditions which affect current pose-based solutions.

Multi-Agent Experimentation and Validation of REO All experiments in this work were

performed with a single agent, although many of the initialization issues addressed by Chapter 8

primarily occur in multi-agent scenarios. All multi-agent experimental validation in Chapter 8 was

done by splitting the trajectory of a single agent into two. Future work could include demonstrating
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REO with several agents, and solving the related communications and consensus issues faced in

collaborative situations.

Autonomous Missions While this work did focus on a number of issues related to performing

real-world autonomous operations, it did not focus on the high-level path planning and situational

awareness required for useful tasks. Closing the loop on the improved state estimation techniques

presented in this dissertation with robust path-planning in real-life operations would be an interesting

future direction and might yield additional problems that need to be solved.
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